Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism

被引:183
作者
An, Qinyou [1 ,2 ]
Xiong, Fangyu [1 ]
Wei, Qiulong [1 ]
Sheng, Jinzhi [1 ]
He, Liang [1 ]
Ma, Dongling [3 ]
Yao, Yan [2 ]
Mai, Liqiang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, WUT Harvard Joint Nano Key Lab, Wuhan 430070, Peoples R China
[2] Univ Houston, Dept Elect & Comp Engn, Cullen Coll Engn, Houston, TX 77204 USA
[3] INRS, Varennes, PQ J3X 1S2, Canada
基金
中国国家自然科学基金;
关键词
high-capacity materials; electrodes; electrochemistry; insertion; extraction mechanisms; long-life; Na3V2(PO4)(3); ELECTROCHEMICAL ENERGY-STORAGE; CARBON-COATED NA3V2(PO4)(3); CATHODE MATERIAL; RATE CAPABILITY; HIGH-CAPACITY; CYCLING STABILITY; LITHIUM; NANOSHEETS; NANOCOMPOSITES; NANOPARTICLES;
D O I
10.1002/aenm.201401963
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na3V2(PO4)(3) (NVP) has excellent electrochemical stability and fast ion diffusion coefficient due to the 3D Na+ ion superionic conductor framework, which make it an attractive cathode material for lithium ion batteries (LIBs). However, the electrochemical performance of NVP needs to be further improved for applications in electric vehicles and hybrid electric vehicles. Here, nanoflake-assembled hierarchical NVP/C microflowers are synthesized using a facile method. The structure of as-synthesized materials enhances the electrochemical performance by improving the electron conductivity, increasing electrode-electrolyte contact area, and shortening the diffusion distance. The as-synthesized material exhibits a high capacity (230 mAh g(-1)), excellent cycling stability (83.6% of the initial capacity is retained after 5000 cycles), and remarkable rate performance (91 C) in hybrid LIBs. Meanwhile, the hybrid LIBs with the structure of NVP || 1 m LiPF6/EC (ethylene carbonate) + DMC (dimethyl carbonate) || NVP and Li4Ti5O12 || 1 m LiPF6/EC + DMC || NVP are assembled and display capacities of 79 and 73 mAh g(-1), respectively. The insertion/extraction mechanism of NVP is systematically investigated, based on in situ X-ray diffraction. The superior electrochemical performance, the design of hybrid LIBs, and the insertion/extraction mechanism investigation will have profound implications for developing safe and stable, high-energy, and high-power LIBs.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries [J].
An, Qinyou ;
Wei, Qiulong ;
Mai, Liqiang ;
Fei, Jiayang ;
Xu, Xu ;
Zhao, Yunlong ;
Yan, Mengyu ;
Zhang, Pengfei ;
Huang, Shizhe .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) :16828-16833
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]  
ATEBAMBA JM, 2012, CHEM MATER, V24, P1223
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   A V2O5/Conductive-Polymer Core/Shell Nanobelt Array on Three-Dimensional Graphite Foam: A High-Rate, Ultrastable, and Freestanding Cathode for Lithium-Ion Batteries [J].
Chao, Dongliang ;
Xia, Xinhui ;
Liu, Jilei ;
Fan, Zhanxi ;
Ng, Chin Fan ;
Lin, Jianyi ;
Zhang, Hua ;
Shen, Ze Xiang ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2014, 26 (33) :5794-5800
[7]   Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life [J].
Chen, Shuai ;
Xin, Yuelong ;
Zhou, Yiyang ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1924-1930
[8]   Li2NaV2(PO4)3:: A 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure [J].
Cushing, BL ;
Goodenough, JB .
JOURNAL OF SOLID STATE CHEMISTRY, 2001, 162 (02) :176-181
[9]   Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries [J].
Du, Ke ;
Guo, Hongwei ;
Hu, Guorong ;
Peng, Zhongdong ;
Cao, Yanbing .
JOURNAL OF POWER SOURCES, 2013, 223 :284-288
[10]   Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries [J].
Duan, Wenchao ;
Zhu, Zhiqiang ;
Li, Hao ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8668-8675