SHALLOW WATER BATHYMETRY DERIVED BY MACHINE LEARNING AND MULTI-TEMPORAL SATELLITE IMAGES

被引:0
作者
Sagawa, Tatsuyuki [1 ]
Yamashita, Yuta [2 ]
Okumura, Toshio [1 ]
Yamanokuchi, Tsutomu [1 ]
机构
[1] Remote Sensing Technol Ctr Japan, Minato Ku, Tokyu Reit Toranomon Bldg 3F,3-17-1 Toranomon, Tokyo 1050001, Japan
[2] Bestmateria, 2-43-15 Misawa, Hino, Tokyo 1910032, Japan
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
satellite derived bathymetry; shallow water; multi-temporal; machine learning; random forest; DEPTH;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Shallow water bathymetry is essential information for coastal science and nautical navigation. In this study, a satellite derived bathymetry (SDB) map, considered suitable for shallow water, was created using random forests (RF) and multi-temporal satellite images from Google Earth Engine. RF performance was assessed with a training dataset varying in size. The root mean square error (RMSE) of the SDB map created by the RF model decreased with an increase in training dataset size. Tide-level correction methods are proposed and satellite-image based correction methods improved accuracy significantly. For our Hateruma case study, the average RMSE for the SDB map created using 25 satellite images was 1.79 m.
引用
收藏
页码:8222 / 8225
页数:4
相关论文
共 10 条
  • [1] Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments
    Dekker, Arnold G.
    Phinn, Stuart R.
    Anstee, Janet
    Bissett, Paul
    Brando, Vittorio E.
    Casey, Brandon
    Fearns, Peter
    Hedley, John
    Klonowski, Wojciech
    Lee, Zhong P.
    Lynch, Merv
    Lyons, Mitchell
    Mobley, Curtis
    Roelfsema, Chris
    [J]. LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2011, 9 : 396 - 425
  • [2] International Hygrographic Organization, 2008, INT HYGR ORG SPEC PU, V44
  • [3] Generalized Lyzenga's Predictor of Shallow Water Depth for Multispectral Satellite Imagery
    Kanno, Ariyo
    Tanaka, Yoji
    Kurosawa, Akira
    Sekine, Masahiko
    [J]. MARINE GEODESY, 2013, 36 (04) : 365 - 376
  • [4] Modified Lyzenga's Method for Estimating Generalized Coefficients of Satellite-Based Predictor of Shallow Water Depth
    Kanno, Ariyo
    Tanaka, Yoji
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (04) : 715 - 719
  • [5] Determination of shallow water depth using optical satellite images
    Kao, Hung-Ming
    Ren, Hsuan
    Lee, Chao-Shing
    Chang, Chung-Pa
    Yen, Jiun-Yee
    Lin, Tang-Huang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (23) : 6241 - 6260
  • [6] SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements
    Lafon, V
    Froidefond, JM
    Lahet, F
    Castaing, P
    [J]. REMOTE SENSING OF ENVIRONMENT, 2002, 81 (01) : 136 - 148
  • [7] Assessment of coral reef bathymetric mapping using visible Landsat Thematic Mapper data
    Liceaga-Correa, MA
    Euan-Avila, JI
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (01) : 3 - 14
  • [8] Multispectral bathymetry using a simple physically based algorithm
    Lyzenga, David R.
    Malinas, Norman R.
    Tanis, Fred J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2251 - 2259
  • [9] Manessa M. D. M., 2016, Geoplann. J. Geomat. Plann, V3, P117, DOI [10.14710/geoplanning.3.2.117-126, DOI 10.14710/GEOPLANNING.3.2.117-126]
  • [10] Determination of water depth with high-resolution satellite imagery over variable bottom types
    Stumpf, RP
    Holderied, K
    Sinclair, M
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (01) : 547 - 556