Size-dependent Probabilistic Micromechanical Damage Mechanics for Particle-reinforced Metal Matrix Composites

被引:26
作者
Ju, J. W. [1 ]
Yanase, K. [2 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[2] Fukuoka Univ, Dept Mech Engn, Fukuoka 81401, Japan
关键词
particle-reinforced composites; metal matrix composites; size effects; dislocation strengthening; probabilistic micromechanics; damage mechanics; plasticity; particle cracking; interfacial debonding; residual stresses; homogenization; EFFECTIVE ELASTOPLASTIC BEHAVIOR; ALIGNED SPHEROIDAL INHOMOGENEITIES; THERMAL RESIDUAL-STRESSES; EFFECTIVE MODULI; DISLOCATION GENERATION; FIBER; DEFORMATION; ALUMINUM; MODEL; MICROSTRUCTURE;
D O I
10.1177/1056789510374165
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A size-dependent micromechanical framework is proposed to predict the deformation responses of particle-reinforced metal matrix composites by incorporating the essential features of the dislocation plasticity. Within the framework of probabilistic micromechanical formulation, the damage caused by the manufacturing process and by the external mechanical loading in the presence of thermal residual stresses is considered. The effective elastic moduli of four-phase composites, consisting of a ductile matrix and randomly located spherical intact or damaged particles are derived. Subsequently, the size-dependent plastic deformation behavior of particle-reinforced metal matrix composites is predicted with a dislocation theory. Specifically, the density of dislocations due to the thermal contraction misfit and the plastic deformation misfit is taken into consideration within the micromechanical methodology to account for the dislocation strengthening. To predict the overall elastoplastic damage behavior of composites, a size-dependent hybrid effective yield function is presented on the basis of the ensemble-volume averaging and the modified matrix yield strength. The comparisons between our predictions and available experimental data illustrate the potential capability of the proposed framework. Numerical simulations are also performed to exhibit the salient features of the proposed methodology.
引用
收藏
页码:1021 / 1048
页数:28
相关论文
共 73 条
[1]   Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments [J].
Abu Al-Rub, RK ;
Voyiadjis, GZ .
INTERNATIONAL JOURNAL OF PLASTICITY, 2004, 20 (06) :1139-1182
[2]  
[Anonymous], 2008, Introduction to Micromechanics and Nanomechanics
[3]   THE STRENGTHENING OF ALUMINUM ALLOY-6061 BY FIBER AND PLATELET SILICON-CARBIDE [J].
ARSENAULT, RJ .
MATERIALS SCIENCE AND ENGINEERING, 1984, 64 (02) :171-181
[4]   MICROSTRUCTURE OF FIBER AND PARTICULATE SIC IN 6061-AL COMPOSITES [J].
ARSENAULT, RJ ;
FISHER, RM .
SCRIPTA METALLURGICA, 1983, 17 (01) :67-71
[5]   STRENGTHENING OF COMPOSITES DUE TO MICROSTRUCTURAL CHANGES IN THE MATRIX [J].
ARSENAULT, RJ ;
WANG, L ;
FENG, CR .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (01) :47-57
[6]   DISLOCATION GENERATION DUE TO DIFFERENCES BETWEEN THE COEFFICIENTS OF THERMAL-EXPANSION [J].
ARSENAULT, RJ ;
SHI, N .
MATERIALS SCIENCE AND ENGINEERING, 1986, 81 (1-2) :175-187
[7]   THERMAL RESIDUAL-STRESS IN METAL MATRIX COMPOSITE [J].
ARSENAULT, RJ ;
TAYA, M .
ACTA METALLURGICA, 1987, 35 (03) :651-659
[8]   WORK HARDENING OF DISPERSION-HARDENED CRYSTALS [J].
ASHBY, MF .
PHILOSOPHICAL MAGAZINE, 1966, 14 (132) :1157-&
[9]   DEFORMATION OF PLASTICALLY NON-HOMOGENEOUS MATERIALS [J].
ASHBY, MF .
PHILOSOPHICAL MAGAZINE, 1970, 21 (170) :399-&
[10]   INITIAL DISLOCATION DISTRIBUTIONS IN TUNGSTEN FIBER COPPER COMPOSITES [J].
CHAWLA, KK ;
METZGER, M .
JOURNAL OF MATERIALS SCIENCE, 1972, 7 (01) :34-&