Lung nodule classification using local kernel regression models with out-of-sample extension

被引:40
作者
Wei, Guohui [1 ]
Ma, He [1 ,2 ]
Qian, Wei [1 ,3 ]
Han, Fangfang [1 ]
Jiang, Hongyang [1 ]
Qi, Shouliang [1 ]
Qiu, Min [4 ]
机构
[1] Northeast Univ, Sino Dutch Biomed & Informat Engn Sch, Hunnan Campus, Shenyang 110169, Liaoning, Peoples R China
[2] Minist Educ, Key Lab Med Image Comp, Shenyang, Liaoning, Peoples R China
[3] Univ Texas El Paso, Dept Elect & Comp Engn, El Paso, TX 79968 USA
[4] Hosp Jining Med Univ, Jining 272029, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral clustering; Linear regression; Kernel trick; Lung nodules; Out-of-sample; COMPUTER-AIDED DIAGNOSIS; PULMONARY NODULES; CT; PERFORMANCE; PERFUSION;
D O I
10.1016/j.bspc.2017.08.026
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer-aided classification is a major research task for computer-aided diagnosis of pulmonary nodules. In radiology domain, labeled data can be expensive to generate. Therefore, in this study, a novel unsupervised spectral clustering algorithm was presented to distinguish benign and malignant nodules. In this algorithm, a new Laplacian matrix was constructed by using local kernel regression models (LKRM) and incorporating a regularization term, the regularization term can tackle the out-of-sample problem. To verify the feasibility of our algorithm, a ground truth dataset was assembled from the LIDC-IDRI database, including 371 benign and 375 malignant lung nodules. All nodules were represented by the texture features, which were computed from the regions of interest (ROIs). Extensive experiments on lung nodules showed that the proposed algorithm not only achieved a higher classification performance than existing popular unsupervised algorithms, but also had superiority comparing to some supervised algorithms (linear discriminant analysis and extreme learning machine). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 33 条
[1]  
[Anonymous], 1998, COMBINATORIAL OPTIMI
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Automatic classification of lung tumour heterogeneity according to a visual-based score system in dynamic contrast enhanced CT sequences [J].
Bevilacqua, Alessandro ;
Baiocco, Serena .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09)
[4]   Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments [J].
Chang, Yongjun ;
Paul, Anjan Kumar ;
Kim, Namkug ;
Baek, Jung Hwan ;
Choi, Young Jun ;
Ha, Eun Ju ;
Lee, Kang Dae ;
Lee, Hyoung Shin ;
Shin, DaeSeock ;
Kim, Nakyoung .
MEDICAL PHYSICS, 2016, 43 (01) :554-567
[5]   Spectral Embedded Hashing for Scalable Image Retrieval [J].
Chen, Lin ;
Xu, Dong ;
Tsang, Ivor Wai-Hung ;
Li, Xuelong .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (07) :1180-1190
[6]   Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy [J].
Firmino, Macedo ;
Angelo, Giovani ;
Morais, Higor ;
Dantas, Marcel R. ;
Valentim, Ricardo .
BIOMEDICAL ENGINEERING ONLINE, 2016, 15
[7]   Effects of Guided Random Sampling of TCCs on Blood Flow Values in CT Perfusion Studies of Lung Tumors [J].
Gibaldi, Agostino ;
Barone, Domenico ;
Gavelli, Giampaolo ;
Malavasi, Silvia ;
Bevilacqua, Alessandro .
ACADEMIC RADIOLOGY, 2015, 22 (01) :58-69
[8]   Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules [J].
Han, Fangfang ;
Wang, Huafeng ;
Zhang, Guopeng ;
Han, Hao ;
Song, Bowen ;
Li, Lihong ;
Moore, William ;
Lu, Hongbing ;
Zhao, Hong ;
Liang, Zhengrong .
JOURNAL OF DIGITAL IMAGING, 2015, 28 (01) :99-115
[9]   Fast and Adaptive Detection of Pulmonary Nodules in Thoracic CT Images Using a Hierarchical Vector Quantization Scheme [J].
Han, Hao ;
Li, Lihong ;
Han, Fangfang ;
Song, Bowen ;
Moore, William ;
Liang, Zhengrong .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (02) :648-659
[10]   Malignancy Classification for Small Pulmonary Nodules with Radiomics and Logistic Regression [J].
Huang, W. ;
Tu, S. .
MEDICAL PHYSICS, 2016, 43 (06) :3377-3378