Chaos and irreversibility of a flexible filament in periodically driven Stokes flow

被引:5
作者
Agrawal, Vipin [1 ,2 ,3 ]
Mitra, Dhrubaditya [1 ,2 ]
机构
[1] Nordita, KTH Royal Inst Technol, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[2] Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[3] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
TURBULENCE; DYNAMICS; MICROFLUIDICS; SUSPENSIONS;
D O I
10.1103/PhysRevE.106.025103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The flow of Newtonian fluid at low Reynolds number is, in general, regular and time-reversible due to absence of nonlinear effects. For example, if the fluid is sheared by its boundary motion that is subsequently reversed, then all the fluid elements return to their initial positions. Consequently, mixing in microchannels happens solely due to molecular diffusion and is very slow. Here, we show, numerically, that the introduction of a single, freely floating, flexible filament in a time-periodic linear shear flow can break reversibility and give rise to chaos due to elastic nonlinearities, if the bending rigidity of the filament is within a carefully chosen range. Within this range, not only the shape of the filament is spatiotemporally chaotic, but also the flow is an efficient mixer. Overall, we find five dynamical phases: the shape of a stiff filament is time-invariant-either straight or buckled; it undergoes a period-two bifurcation as the filament is made softer; becomes spatiotemporally chaotic for even softer filaments but, surprisingly, the chaos is suppressed if bending rigidity is decreased further.
引用
收藏
页数:16
相关论文
共 63 条
[1]  
[Anonymous], OUR CODE
[2]   Frontiers of chaotic advection [J].
Aref, Hassan ;
Blake, John R. ;
Budisic, Marko ;
Cardoso, Silvana S. S. ;
Cartwright, Julyan H. E. ;
Clercx, Herman J. H. ;
El Omari, Kamal ;
Feudel, Ulrike ;
Golestanian, Ramin ;
Gouillart, Emmanuelle ;
van Heijst, GertJan F. ;
Krasnopolskaya, Tatyana S. ;
Le Guer, Yves ;
MacKay, Robert S. ;
Meleshko, Vyacheslav V. ;
Metcalfe, Guy ;
Mezic, Igor ;
de Moura, Alessandro P. S. ;
Piro, Oreste ;
Speetjens, Michel F. M. ;
Sturman, Rob ;
Thiffeault, Jean-Luc ;
Tuval, Idan .
REVIEWS OF MODERN PHYSICS, 2017, 89 (02)
[3]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[4]   Instability of elastic filaments in shear flow yields first-normal-stress differences [J].
Becker, LE ;
Shelley, MJ .
PHYSICAL REVIEW LETTERS, 2001, 87 (19)
[5]   Discrete Viscous Threads [J].
Bergou, Miklos ;
Audoly, Basile ;
Vouga, Etienne ;
Wardetzky, Max ;
Grinspun, Eitan .
ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (04)
[6]   Discrete elastic rods [J].
Bergou, Miklos ;
Wardetzky, Max ;
Robinson, Stephen ;
Audoly, Basile ;
Grinspun, Eitan .
ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03)
[7]  
Bonacci F, 2022, Arxiv, DOI arXiv:2205.08361
[8]   STOKESIAN DYNAMICS [J].
BRADY, JF ;
BOSSIS, G .
ANNUAL REVIEW OF FLUID MECHANICS, 1988, 20 :111-157
[9]   A VARIABLE ORDER RUNGE-KUTTA METHOD FOR INITIAL-VALUE PROBLEMS WITH RAPIDLY VARYING RIGHT-HAND SIDES [J].
CASH, JR ;
KARP, AH .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1990, 16 (03) :201-222
[10]   Flexible filaments buckle into helicoidal shapes in strong compressional flows [J].
Chakrabarti, Brato ;
Liu, Yanan ;
LaGrone, John ;
Cortez, Ricardo ;
Fauci, Lisa ;
du Roure, Olivia ;
Saintillan, David ;
Lindner, Anke .
NATURE PHYSICS, 2020, 16 (06) :689-+