Nanotechnology-Based Histone Deacetylase Inhibitors for Cancer Therapy

被引:26
作者
Tu, Bin [1 ,2 ]
Zhang, Meng [1 ]
Liu, Tuanbing [1 ]
Huang, Yongzhuo [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] NMPA Key Lab Qual Res & Evaluat Pharmaceut Excipi, Beijing, Peoples R China
关键词
Histone deacetylase inhibitors (HDACi); nanotechnology; nanomedicine; cancer therapy; solid tumor; targeting drug delivery; combination therapy; TUMOR MICROENVIRONMENT; CO-DELIVERY; NANOPARTICLES; COMBINATION; DRUG; VORINOSTAT; CONJUGATE; NANOINFORMATICS; DOXORUBICIN; CELLS;
D O I
10.3389/fcell.2020.00400
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Histone deacetylase inhibitors (HDACi) have been approved and achieved success in hematologic malignancies. But its application in solid tumors still confronts big challenges and is hampered by low treatment efficacy. Nanotechnology has been widely applied in cancer therapy, and nanomedicine could improve drug stability, prolong the circulation half-life, and increase intratumoral drug accumulation. Therefore, nanomedicine is a promising strategy to enhance HDACi therapy efficacy. The review provides a summary of the advances of HDACi nanomedicines with a focus on the design principles of the targeting delivery systems for HDACi.
引用
收藏
页数:8
相关论文
共 59 条
[1]   Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting [J].
Ahmad, Anas ;
Khan, Farheen ;
Mishra, Rakesh Kumar ;
Khan, Rehan .
JOURNAL OF MEDICINAL CHEMISTRY, 2019, 62 (23) :10475-10496
[2]   Emerging drug profile: CPX-351 (vyxeos) in AML [J].
Alfayez, Mansour ;
Kantarjian, Hagop ;
Kadia, Tapan ;
Ravandi-Kashani, Farhad ;
Daver, Naval .
LEUKEMIA & LYMPHOMA, 2020, 61 (02) :288-297
[3]   Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment [J].
Alp, Esma ;
Damkaci, Fehmi ;
Guven, Eylem ;
Tenniswood, Martin .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2019, 14 :1335-1346
[4]   Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery [J].
Amreddy, Narsireddy ;
Babu, Anish ;
Muralidharan, Ranganayaki ;
Panneerselvam, Janani ;
Srivastava, Akhil ;
Ahmed, Rebaz ;
Mehta, Meghna ;
Munshi, Anupama ;
Ramesh, Rajagopal .
ADVANCES IN CANCER RESEARCH, VOL 137, 2018, 137 :115-170
[5]  
Bach P., 2020, CANC DRUG COSTS MONT
[6]   Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic [J].
Bayda, Samer ;
Hadla, Mohamad ;
Palazzolo, Stefano ;
Riello, Pietro ;
Corona, Giuseppe ;
Toffoli, Giuseppe ;
Rizzolio, Flavio .
CURRENT MEDICINAL CHEMISTRY, 2018, 25 (34) :4269-4303
[7]   Cancer active targeting by nanoparticles: a comprehensive review of literature [J].
Bazak, Remon ;
Houri, Mohamad ;
El Achy, Samar ;
Kamel, Serag ;
Refaat, Tamer .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2015, 141 (05) :769-784
[8]   The ROMP: A Powerful Approach to Synthesize Novel pH-Sensitive Nanoparticles for Tumor Therapy [J].
Bertrand, Philippe ;
Blanquart, Christophe ;
Heroguez, Valerie .
BIOMOLECULES, 2019, 9 (02)
[9]   Endogenous Stimuli-responsive Nanocarriers for Drug Delivery [J].
Chen, Huachao ;
Liu, Danyang ;
Guo, Zijian .
CHEMISTRY LETTERS, 2016, 45 (03) :242-249
[10]   Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment [J].
Dai, Yunlu ;
Xu, Can ;
Sun, Xiaolian ;
Chen, Xiaoyuan .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3830-3852