Embedded isolated singularities of flat surfaces in hyperbolic 3-space

被引:36
作者
Gálvez, JA [1 ]
Mira, P
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
关键词
D O I
10.1007/s00526-004-0321-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a complete description of the flat surfaces in hyperbolic 3-space that are regularly embedded around an isolated singularity. Specifically, we show that there is a one-to-one explicit correspondence between this class and the class of regular analytic convex Jordan curves in the 2-sphere. Previously, the only known examples of such surfaces were rotational ones. To achieve this result, we first solve the geometric Cauchy problem for flat surfaces in hyperbolic 3-space.
引用
收藏
页码:239 / 260
页数:22
相关论文
共 10 条
[1]   Bjorling problem for maximal surfaces in Lorentz-Minkowski space [J].
Alías, LJ ;
Chaves, RMB ;
Mira, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 :289-316
[2]  
BRYANT RL, 1987, ASTERISQUE, P321
[3]   Complete linear Weingarten surfaces of bryant type.: A plateau problem at infinity [J].
Gálvez, JA ;
Martínez, A ;
Milán, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (09) :3405-3428
[4]   Flat surfaces in the hyperbolic 3-space [J].
Gálvez, JA ;
Martínez, A ;
Milán, F .
MATHEMATISCHE ANNALEN, 2000, 316 (03) :419-435
[5]  
GALVEZ JA, IN PRESS ADV MATH
[6]   Flat fronts in hyperbolic 3-space [J].
Kokubu, M ;
Umehara, M ;
Yamada, K .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (01) :149-175
[7]  
KOKUBU M, SINGULARITIES FLAT F
[8]  
Li A.M., 1993, DEGRUYTER EXPOSITION
[9]  
MIRA P, 2003, THESIS U MURCIA
[10]  
ROITMAN P, FLAT SURFACES HYPERB