Artificial intelligence in cardiovascular imaging-principles, expectations, and limitations

被引:31
作者
Antoniades, Charalambos [1 ,2 ,3 ,4 ]
Oikonomou, Evangelos K. [1 ,5 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Div Cardiovasc Med, Radcliffe Dept Med, Headley Way, Oxford OX39DU, England
[2] British Heart Fdn Ctr Res Excellence, Oxford, England
[3] Oxford Univ Hosp NHS Fdn Trust, Natl Inst Hlth Res NIHR, John Radcliffe Hosp, Oxford Biomed Res Ctr, Headley Way, Oxford OX39DU, England
[4] Univ Oxford, John Radcliffe Hosp, Acute Vasc Imaging Ctr, Headley Way, Oxford OX39DU, England
[5] Yale New Haven Hosp, Yale Sch Med, Sect Cardiovasc Med, Dept Internal Med, New Haven, CT USA
关键词
MEDICINE; PREDICTION;
D O I
10.1093/eurheartj/ehab678
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Seven lessons for cardiologists in the era of artificial intelligence. When reviewing an artificial intelligence application, one needs to critically appraise the following domains: (1) Are artificial intelligence and machine learning necessary to address question of interest? (2) Are the input data of high quality? (3) Is an interpretation of the final algorithm attempted? (4) How is bias addressed? (5) Is appropriate external validation performed? (6) Are there any regulatory or ethical compliance concerns? (7) How much supervision does the final model require? © 2024 Oxford University Press. All rights reserved.
引用
收藏
页码:1322 / 1326
页数:5
相关论文
共 20 条
[1]   The year in cardiovascular medicine 2020: digital health and innovation [J].
Antoniades, Charalambos ;
Asselbergs, Folkert W. ;
Vardas, Panos .
EUROPEAN HEART JOURNAL, 2021, 42 (07) :732-739
[2]   The new age of radiomic risk profiling: perivascular fat at the heart of the matter [J].
Bartelt, Alexander ;
Leipsic, Jonathon ;
Weber, Christian .
EUROPEAN HEART JOURNAL, 2019, 40 (43) :3544-3546
[3]  
Cohen-Shelly M., 2021, EUR HEART J
[4]   Reporting of artificial intelligence prediction models [J].
Collins, Gary S. ;
Moons, Karel G. M. .
LANCET, 2019, 393 (10181) :1577-1579
[5]   Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review [J].
Dey, Damini ;
Slomka, Piotr J. ;
Leeson, Paul ;
Comaniciu, Dorin ;
Shrestha, Sirish ;
Sengupta, Partho P. ;
Marwick, Thomas H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) :1317-1335
[6]  
Gerke S., 2020, Artificial Intelligence in Healthcare, P295, DOI DOI 10.1016/B978-0-12-818438-7.00012-5
[7]   Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data [J].
Gianfrancesco, Milena A. ;
Tamang, Suzanne ;
Yazdany, Jinoos ;
Schmajuk, Gabriela .
JAMA INTERNAL MEDICINE, 2018, 178 (11) :1544-1547
[8]   Big data from electronic health records for early and late translational cardiovascular research: challenges and potential [J].
Hemingway, Harry ;
Asselbergs, Folkert W. ;
Danesh, John ;
Dobson, Richard ;
Maniadakis, Nikolaos ;
Maggioni, Aldo ;
van Thiel, Ghislaine J. M. ;
Cronin, Maureen ;
Brobert, Gunnar ;
Vardas, Panos ;
Anker, Stefan D. ;
Grobbee, Diederick E. ;
Denaxas, Spiros .
EUROPEAN HEART JOURNAL, 2018, 39 (16) :1481-+
[9]   Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction [J].
Khera, Rohan ;
Haimovich, Julian ;
Hurley, Nathan C. ;
McNamara, Robert ;
Spertus, John A. ;
Desai, Nihar ;
Rumsfeld, John S. ;
Masoudi, Frederick A. ;
Huang, Chenxi ;
Normand, Sharon-Lise ;
Mortazavi, Bobak J. ;
Krumholz, Harlan M. .
JAMA CARDIOLOGY, 2021, 6 (06) :633-641
[10]   Deep learning for cardiovascular medicine: a practical primer [J].
Krittanawong, Chayakrit ;
Johnson, Kipp W. ;
Rosenson, Robert S. ;
Wang, Zhen ;
Aydar, Mehmet ;
Baber, Usman ;
Min, James K. ;
Tang, W. H. Wilson ;
Halperin, Jonathan L. ;
Narayan, Sanjiv M. .
EUROPEAN HEART JOURNAL, 2019, 40 (25) :2058-+