Angular motion equations for a satellite with hinged flexible solar panel

被引:7
作者
Ovchinnikov, M. Yu. [1 ]
Tkachev, S. S. [1 ]
Roldugin, D. S. [1 ]
Nuralieva, A. B. [1 ]
Mashtakov, Y. V. [1 ]
机构
[1] Keldysh Inst Appl Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Non-linear model; Flexible element; Normal mode; Hinged solar panel; Finite element method; FEM;
D O I
10.1016/j.actaastro.2016.07.038
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Non-linear mathematical model for the satellite with hinged flexible solar panel is presented. Normal modes of flexible elements are used for motion description. Motion equations are derived using virtual work principle. A comparison of normal modes calculation between finite element method and developed model is presented. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:534 / 539
页数:6
相关论文
共 9 条
[1]  
Gasbarri P., 2014, ACTA ASTRONAUT, V104, P276
[2]  
Junkins J.L., 1993, AIAA ED SERIES
[3]   EQUATIONS OF MOTION FOR MANEUVERING FLEXIBLE SPACECRAFT [J].
MEIROVITCH, L ;
QUINN, RD .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1987, 10 (05) :453-465
[4]  
Meirovitch L., 1980, Computational Methods in Structural Dynamics
[5]   Vibration control of a flexible space manipulator during on orbit operations [J].
Sabatini, Marco ;
Gasbarri, Paolo ;
Monti, Riccardo ;
Palmerini, Giovanni Battista .
ACTA ASTRONAUTICA, 2012, 73 :109-121
[6]   Dynamics of multibody systems in space environment; Lagrangian vs. Eulerian approach [J].
Santini, P ;
Gasbarri, P .
ACTA ASTRONAUTICA, 2004, 54 (01) :1-24
[7]   STABILITY OF FLEXIBLE SPACECRAFTS [J].
SANTINI, P .
ACTA ASTRONAUTICA, 1976, 3 (9-10) :685-713
[8]   General background and approach to multibody dynamics for space applications [J].
Santini, Paolo ;
Gasbarri, Paolo .
ACTA ASTRONAUTICA, 2009, 64 (11-12) :1224-1251
[9]  
Smirnov V.I., 2011, ALGEBRA GROUP THEORY