On Coleman automorphisms of wreath products of finite nilpotent groups by abelian groups

被引:3
作者
Hai JinKe [1 ]
Li ZhengXing [1 ]
机构
[1] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Coleman automorphisms; wreath products; the normalizer problem; INTEGRAL GROUP-RINGS; CLASS-PRESERVING AUTOMORPHISMS; NORMALIZER PROPERTY;
D O I
10.1007/s11425-011-4298-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = NwrA be a wreath product of a finite nilpotent group N by an abelian group A. It is shown that every Coleman automorphism of G is an inner automorphism. As an immediate consequence of this result, it is obtained that the normalizer property holds for G.
引用
收藏
页码:2253 / 2257
页数:5
相关论文
共 20 条
[1]  
Coleman D. B., 1964, P AM MATH SOC, V15, P511, DOI DOI 10.2307/2034735
[2]  
Hai J. K., 2008, ACTA MATH SINICA CHI, V51, P1115
[3]   Coleman automorphisms of finite groups [J].
Hertweck, M ;
Kimmerle, W .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (02) :203-215
[4]   Class-preserving coleman automorphisms of finite groups [J].
Hertweck, M .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (01) :1-7
[5]   Local analysis of the normalizer problem [J].
Hertweck, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 163 (03) :259-276
[6]   A counterexample to the isomorphism problem for integral group rings [J].
Hertweck, M .
ANNALS OF MATHEMATICS, 2001, 154 (01) :115-138
[7]   Class-preserving automorphisms of finite groups [J].
Hertweck, M .
JOURNAL OF ALGEBRA, 2001, 241 (01) :1-26
[8]   Class-preserving automorphisms and the normalizer property for Blackburn groups [J].
Hertweck, Martin ;
Jespers, Eric .
JOURNAL OF GROUP THEORY, 2009, 12 (01) :157-169
[9]   GROUP AUTOMORPHISMS INDUCING THE IDENTITY MAP ON COHOMOLOGY [J].
JACKOWSKI, S ;
MARCINIAK, Z .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 44 (1-3) :241-250
[10]   Automorphisms of finite groups [J].
Juriaans, SO ;
De Miranda, JM ;
Robério, JR .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) :1705-1714