Systematic review of prediction models in relapsing remitting multiple sclerosis

被引:31
作者
Brown, Fraser S. [1 ]
Glasmacher, Stella A. [1 ]
Kearns, Patrick K. A. [1 ]
MacDougall, Niall [2 ]
Hunt, David [1 ,3 ,4 ]
Connick, Peter [1 ,4 ]
Chandran, Siddharthan [1 ,4 ,5 ]
机构
[1] Univ Edinburgh, Anne Rowling Regenerat Neurol Clin, Edinburgh, Midlothian, Scotland
[2] Inst Neurol Sci, Glasgow, Lanark, Scotland
[3] Univ Edinburgh, MRC Inst Genet & Mol Med, Edinburgh, Midlothian, Scotland
[4] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[5] Univ Edinburgh, UK Dementia Res Inst, Edinburgh, Midlothian, Scotland
基金
英国惠康基金;
关键词
LONG-TERM DISABILITY; SECONDARY PROGRESSION; NATURAL-HISTORY; MULTIVARIATE-ANALYSIS; EVOKED-POTENTIALS; DISEASE-ACTIVITY; BRAIN ATROPHY; RISK; MS; ACCUMULATION;
D O I
10.1371/journal.pone.0233575
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The natural history of relapsing remitting multiple sclerosis (RRMS) is variable and prediction of individual prognosis challenging. The inability to reliably predict prognosis at diagnosis has important implications for informed decision making especially in relation to disease modifying therapies. We conducted a systematic review in order to collate, describe and assess the methodological quality of published prediction models in RRMS. We searched Medline, Embase and Web of Science. Two reviewers independently screened abstracts and full text for eligibility and assessed risk of bias. Studies reporting development or validation of prediction models for RRMS in adults were included. Data collection was guided by the checklist for critical appraisal and data extraction for systematic reviews (CHARMS) and applicability and methodological quality assessment by the prediction model risk of bias assessment tool (PROBAST). 30 studies were included in the review. Applicability was assessed as high risk of concern in 27 studies. Risk of bias was assessed as high for all studies. The single most frequently included predictor was baseline EDSS (n = 11). T2 Lesion volume or number and brain atrophy were each retained in seven studies. Five studies included external validation and none included impact analysis. Although a number of prediction models for RRMS have been reported, most are at high risk of bias and lack external validation and impact analysis, restricting their application to routine clinical practice.
引用
收藏
页数:13
相关论文
共 66 条
[1]   Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis [J].
Agosta, Federica ;
Rovaris, Marco ;
Pagani, Elisabetta ;
Sormani, Maria Pia ;
Comi, Giancarlo ;
Filippi, Massimo .
BRAIN, 2006, 129 :2620-2627
[2]   Prognosis and prognostic research: validating a prognostic model [J].
Altman, Douglas G. ;
Vergouwe, Yvonne ;
Royston, Patrick ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2009, 338 :1432-1435
[3]   A prospective study on the natural history of multiple sclerosis: clues to the conduct and interpretation of clinical trials [J].
Amato, MP ;
Ponziani, G ;
Bartolozzi, ML ;
Siracusa, G .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1999, 168 (02) :96-106
[4]   Predicting Clinical Progression in Multiple Sclerosis With the Magnetic Resonance Disease Severity Scale [J].
Bakshi, Rohit ;
Neema, Mohit ;
Healy, Brian C. ;
Liptak, Zsuzsanna ;
Betensky, Rebecca A. ;
Buckle, Guy J. ;
Gauthier, Susan A. ;
Stankiewicz, James ;
Meier, Dominik ;
Egorova, Svetlana ;
Arora, Ashish ;
Guss, Zachary D. ;
Glanz, Bonnie ;
Khoury, Samia J. ;
Guttmann, Charles R. G. ;
Weiner, Howard L. .
ARCHIVES OF NEUROLOGY, 2008, 65 (11) :1449-1453
[5]   Prognostic biomarkers of IFNb therapy in multiple sclerosis patients [J].
Baranzini, Sergio E. ;
Madireddy, Lohith R. ;
Cromer, Anne ;
D'Antonio, Mauro ;
Lehr, Lorenz ;
Beelke, Manolo ;
Farmer, Pierre ;
Battaglini, Marco ;
Caillier, Stacy J. ;
Stromillo, Maria L. ;
De Stefano, Nicola ;
Monnet, Emmanuel ;
Cree, Bruce A. C. .
MULTIPLE SCLEROSIS JOURNAL, 2015, 21 (07) :894-904
[6]   Predicting gadolinium enhancement status in MS patients eligible for randomized clinical trials [J].
Barkhof, F ;
Held, U ;
Simon, JH ;
Daumer, M ;
Fazekas, F ;
Filippi, M ;
Frank, JA ;
Kappos, L ;
Li, D ;
Menzler, S ;
Miller, DH ;
Petkau, J ;
Wolinsky, J .
NEUROLOGY, 2005, 65 (09) :1447-1454
[7]   Computational classifiers for predicting the short-term course of Multiple sclerosis [J].
Bejarano, Bartolome ;
Bianco, Mariangela ;
Gonzalez-Moron, Dolores ;
Sepulcre, Jorge ;
Goni, Joaquin ;
Arcocha, Juan ;
Soto, Oscar ;
Del Carro, Ubaldo ;
Comi, Giancarlo ;
Leocani, Letizia ;
Villoslada, Pablo .
BMC NEUROLOGY, 2011, 11
[8]   BREMSO: a simple score to predict early the natural course of multiple sclerosis [J].
Bergamaschi, R. ;
Montomoli, C. ;
Mallucci, G. ;
Lugaresi, A. ;
Izquierdo, G. ;
Grand'Maison, F. ;
Duquette, P. ;
Shaygannejad, V. ;
Alroughani, R. ;
Grammond, P. ;
Boz, C. ;
Iuliano, G. ;
Zwanikken, C. ;
Petersen, T. ;
Lechner-Scott, J. ;
Hupperts, R. ;
Butzkueven, H. ;
Pucci, E. ;
Oreja-Guevara, C. ;
Cristiano, E. ;
Amato, M. P. Pia ;
Havrdova, E. ;
Fernandez-Bolanos, R. ;
Spelman, T. ;
Trojano, M. .
EUROPEAN JOURNAL OF NEUROLOGY, 2015, 22 (06) :981-989
[9]   Predicting secondary progression in relapsing-remitting multiple sclerosis: a Bayesian analysis [J].
Bergamaschi, R ;
Berzuini, C ;
Romani, A ;
Cosi, V .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2001, 189 (1-2) :13-21
[10]   Early prediction of the long term evolution of multiple sclerosis: the Bayesian Risk Estimate for Multiple Sclerosis (BREMS) score [J].
Bergamaschi, Roberto ;
Quaglini, Silvana ;
Trojano, Maria ;
Amato, Maria Pia ;
Tavazzi, Eleonora ;
Paolicelli, Damiano ;
Zipoli, Valentina ;
Romani, Alfredo ;
Fuiani, Aurora ;
Portaccio, Emilio ;
Berzuini, Carlo ;
Montomoli, Cristina ;
Bastianello, Stefano ;
Cosi, Vittorio .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2007, 78 (07) :757-759