ON THE AVERAGE VOLUME OF SECTIONS OF CONVEX BODIES

被引:2
作者
Brazitikos, Silouanos [1 ]
Dann, Susanna [2 ]
Giannopoulos, Apostolos [1 ]
Koldbosky, Alexander [3 ]
机构
[1] Univ Athens, Dept Math Natl & Kapodistrian, Athens 15784, Greece
[2] Vienna Univ Technol, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
INTERSECTION BODIES; INEQUALITIES;
D O I
10.1007/s11856-017-1561-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The average section functional as(K) of a star body in R-n is the average volume of its central hyperplane sections: as(K) = integral(n-1)(S)vertical bar K boolean AND xi (perpendicular to)vertical bar d sigma(xi). We study the question whether there exists an absolute constant C > 0 such that for every n, for every centered convex body K in Rn and for every 1 <= k <= n - 2, as(K) <= C-k vertical bar K vertical bar(k/n) max as(K boolean AND E). E is an element of Gr(n-k) We observe that the case k = 1 is equivalent to the hyperplane conjecture. We show that this inequality holds true in full generality if one replaces C by CLK or Cd-ovr(K, BPkn), where L-K is the isotropic constant of K and d(ovr)(K, BPkn) is the outer volume ratio distance of K to the class BPkn of generalized k-intersection bodies. We also compare as(K) to the average of as(K boolean AND E) over all k-codimensional sections of K. We examine separately the dependence of the constants on the dimension when K is in some classical position. Moreover, we study the natural lower dimensional analogue of the average section functional.
引用
收藏
页码:921 / 947
页数:27
相关论文
共 30 条
[1]  
Artstein-Avidan S., 2015, Mathematical Surveys and Monographs, V202
[2]  
BALL K, 1991, J LOND MATH SOC, V44, P351
[3]   PROJECTIONS OF BODIES AND HEREDITARY PROPERTIES OF HYPERGRAPHS [J].
BOLLOBAS, B ;
THOMASON, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :417-424
[4]  
BOURGAIN J, 1991, LECT NOTES MATH, V1469, P127
[5]  
Brazitikos S., ADV GEOMETR IN PRESS
[6]  
Brazitikos Silouanos, 2014, MATH SURVEYS MONOGRA, V196
[7]  
Busemann H., 1960, PAC J MATH, V10, P35
[8]   ESTIMATES FOR THE AFFINE AND DUAL AFFINE QUERMASSINTEGRALS OF CONVEX BODIES [J].
Dafnis, Nikos ;
Paouris, Grigoris .
ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) :1005-1021
[9]   SPHERICAL FUNCTIONS AND INTEGRAL GEOMETRY [J].
FURSTENBERG, H ;
TZKONI, I .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 10 (03) :327-+
[10]  
Gardner R. J., 2006, ENCY MATH ITS APPL, V58