Wearable Sensor-Based Gait Analysis for Age and Gender Estimation

被引:36
作者
Ahad, Md Atiqur Rahman [1 ,2 ]
Thanh Trung Ngo [1 ]
Antar, Anindya Das [3 ]
Ahmed, Masud [2 ]
Hossain, Tahera [4 ]
Muramatsu, Daigo [1 ]
Makihara, Yasushi [1 ]
Inoue, Sozo [4 ]
Yagi, Yasushi [1 ]
机构
[1] Osaka Univ, Dept Media Intelligent, Ibaraki 5670047, Japan
[2] Univ Dhaka, Dept Elect & Elect Engn, Dhaka 1000, Bangladesh
[3] Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Kitakyushu, Fukuoka 8048550, Japan
基金
日本学术振兴会;
关键词
gait; recognition; wearable sensor; age estimation; gender; smartphone; ELDERLY-PEOPLE; WALKING SPEED; PERFORMANCE; RECOGNITION; ADULTS;
D O I
10.3390/s20082424
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Wearable sensor-based systems and devices have been expanded in different application domains, especially in the healthcare arena. Automatic age and gender estimation has several important applications. Gait has been demonstrated as a profound motion cue for various applications. A gait-based age and gender estimation challenge was launched in the 12th IAPR International Conference on Biometrics (ICB), 2019. In this competition, 18 teams initially registered from 14 countries. The goal of this challenge was to find some smart approaches to deal with age and gender estimation from sensor-based gait data. For this purpose, we employed a large wearable sensor-based gait dataset, which has 745 subjects (357 females and 388 males), from 2 to 78 years old in the training dataset; and 58 subjects (19 females and 39 males) in the test dataset. It has several walking patterns. The gait data sequences were collected from three IMUZ sensors, which were placed on waist-belt or at the top of a backpack. There were 67 solutions from ten teams-for age and gender estimation. This paper extensively analyzes the methods and achieved-results from various approaches. Based on analysis, we found that deep learning-based solutions lead the competitions compared with conventional handcrafted methods. We found that the best result achieved 24.23% prediction error for gender estimation, and 5.39 mean absolute error for age estimation by employing angle embedded gait dynamic image and temporal convolution network.
引用
收藏
页数:24
相关论文
共 70 条
[1]  
Ahad MdAtiqurRahman, 2019, P IEEE C COMP VIS PA, P1
[2]   Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions [J].
Ahamed, Nizam Uddin ;
Kobsar, Dylan ;
Benson, Lauren ;
Clermont, Christian ;
Kohrs, Russell ;
Osis, Sean T. ;
Ferber, Reed .
PLOS ONE, 2018, 13 (09)
[3]   Smart Sensor Systems for Wearable Electronic Devices [J].
An, Byeong Wan ;
Shin, Jung Hwal ;
Kim, So-Yun ;
Kim, Joohee ;
Ji, Sangyoon ;
Park, Jihun ;
Lee, Youngjin ;
Jang, Jiuk ;
Park, Young-Geun ;
Cho, Eunjin ;
Jo, Subin ;
Park, Jang-Ung .
POLYMERS, 2017, 9 (08)
[4]  
[Anonymous], PROC CVPR IEEE
[5]  
[Anonymous], P 12 IAPR INT C BIOM
[6]  
[Anonymous], P 41 ANN INT C IEEE
[7]  
[Anonymous], IMUZ
[8]  
[Anonymous], P INT C ACT BEH COMP
[9]  
[Anonymous], P 2018 ACM INT JOINT
[10]  
[Anonymous], ARXIV171207958V1