Countable homogeneous multipartite graphs

被引:14
作者
Jenkinson, Tristan [1 ]
Truss, J. K. [1 ]
Seidel, Daniel [2 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Bonn, Inst Informat 3, D-53117 Bonn, Germany
基金
英国工程与自然科学研究理事会;
关键词
STABLE STRUCTURES; LANGUAGE;
D O I
10.1016/j.ejc.2011.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a classification of all the countable homogeneous multipartite graphs. This generalizes the similar result for bipartite graphs given in Goldstern et al. (1996) [6]. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 21 条
[1]   Countable 1-transitive coloured linear orderings II [J].
Campero-Arena, G ;
Truss, JK .
FUNDAMENTA MATHEMATICAE, 2004, 183 (03) :185-213
[2]   Countable, 1-transitive, coloured linear orderings I [J].
Campero-Arena, G ;
Truss, JK .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 105 (01) :1-13
[3]   STABLE FINITELY HOMOGENEOUS STRUCTURES [J].
CHERLIN, G ;
LACHLAN, AH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (02) :815-850
[4]  
Cherlin G., 1998, Mem. Amer. Math. Soc., V131, P621
[5]   Countable homogeneous coloured partial orders [J].
de Sousa, S. Torrezao ;
Truss, J. K. .
DISSERTATIONES MATHEMATICAE, 2008, (455) :1-48
[6]   HOMOGENEOUS GRAPHS [J].
GARDINER, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (01) :94-102
[7]   Infinite homogeneous bipartite graphs with unequal sides [J].
Goldstern, M ;
Grossberg, R ;
Kojman, M .
DISCRETE MATHEMATICS, 1996, 149 (1-3) :69-82
[8]  
Golfand Y., 1978, ALGORITHMIC STUDIES, P76
[9]   COUNTABLE HOMOGENEOUS RELATIONAL STRUCTURES AND CHIO-CATEGORICAL THEORIES [J].
HENSON, CW .
JOURNAL OF SYMBOLIC LOGIC, 1972, 37 (03) :494-500
[10]  
Jenkinson T., 2006, THESIS U LEEDS