The genetics of disulfide bond metabolism

被引:237
作者
Rietsch, A [1 ]
Beckwith, J [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA
关键词
disulfide bond formation; thiol-disulfide oxidoreductase; protein disulfide isomerase; protein folding;
D O I
10.1146/annurev.genet.32.1.163
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Disulfide bonds are required for the stability and function of a large number of proteins. Genetic analysis in combination with biochemical studies have elucidated the main catalysts involved in facilitating these processes in the cell. All enzymes involved in thiol-disulfide metabolism have a conserved active site that consists of two cysteine residues, separated by two intervening amino acids, the Cys-Xaa-Xaa-Cys motif. While these enzymes are capable of catalyzing both disulfide bond formation and reduction, they have evolved to perform one or the other reaction more efficiently. In the cytoplasm, multiple pathways are involved in the reduction of disulfide bonds that occur as part of the catalytic cycle of a variety of metabolic enzymes. In the bacterial periplasm, a system for the efficient introduction as well as isomerization of disulfide bonds is in place. In eukaryotes, disulfide bonds are introduced into proteins in the endoplasmic reticulum. Genetic studies have recently begun to reveal new features of this process. While the enzyme mechanisms of thiol-disulfide oxidoreductases have been the subject of much scrutiny, questions remain regarding where and when they act in vivo, their specificities, and the maintenance of the redox environment that determines their function.
引用
收藏
页码:163 / 184
页数:22
相关论文
共 89 条
[1]  
AKIYAMA Y, 1992, J BIOL CHEM, V267, P22440
[2]   A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins [J].
Andersen, CL ;
MattheyDupraz, A ;
Missiakas, D ;
Raina, S .
MOLECULAR MICROBIOLOGY, 1997, 26 (01) :121-132
[3]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[4]  
[Anonymous], PROLYL HYDROXYLASE P
[5]   Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria [J].
Åslund, F ;
Berndt, KD ;
Holmgren, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30780-30786
[6]   A PATHWAY FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
LEE, JO ;
JANDER, G ;
MARTIN, N ;
BELIN, D ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :1038-1042
[7]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[8]   BUILDING BRIDGES - DISULFIDE BOND FORMATION IN THE CELL [J].
BARDWELL, JCA .
MOLECULAR MICROBIOLOGY, 1994, 14 (02) :199-205
[9]   COTRANSLATIONAL FOLDING AND CALNEXIN BINDING DURING GLYCOPROTEIN-SYNTHESIS [J].
CHEN, W ;
HELENIUS, J ;
BRAAKMAN, I ;
HELENIUS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6229-6233
[10]   The CXXC motif: Imperatives for the formation of native disulfide bonds in the cell [J].
Chivers, PT ;
Laboissiere, MCA ;
Raines, RT .
EMBO JOURNAL, 1996, 15 (11) :2659-2667