Winding around non-Hermitian singularities

被引:86
作者
Zhong, Qi [1 ,2 ]
Khajavikhan, Mercedeh [3 ]
Christodoulides, Demetrios N. [3 ]
El-Ganainy, Ramy [1 ,2 ,4 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Henes Ctr Quantum Phenomena, Houghton, MI 49931 USA
[3] Univ Cent Florida, Coll Opt & Photon CREOL, Orlando, FL 32816 USA
[4] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
基金
美国国家科学基金会;
关键词
PARITY-TIME SYMMETRY; EXCEPTIONAL POINTS; LASER;
D O I
10.1038/s41467-018-07105-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-Hermitian singularities are ubiquitous in non-conservative open systems. Owing to their peculiar topology, they can remotely induce observable effects when encircled by closed trajectories in the parameter space. To date, a general formalism for describing this process beyond simple cases is still lacking. Here we develop a general approach for treating this problem by utilizing the power of permutation operators and representation theory. This in turn allows us to reveal a surprising result that has so far escaped attention: loops that enclose the same singularities in the parameter space starting from the same point and traveling in the same direction, do not necessarily share the same end outcome. Interestingly, we find that this equivalence can be formally established only by invoking the topological notion of homotopy. Our findings are general with far reaching implications in various fields ranging from photonics and atomic physics to microwaves and acoustics.
引用
收藏
页数:9
相关论文
共 46 条
[1]  
[Anonymous], COMPLEX VARIABLES
[2]  
[Anonymous], P SPIE
[3]   Optical polarization evolution near a non-Hermitian degeneracy [J].
Berry, M. V. .
JOURNAL OF OPTICS, 2011, 13 (11)
[4]   Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon [J].
Berry, M. V. ;
Uzdin, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (43)
[5]  
Brualdi R.A., 2006, Combinatorial Matrix Classes, VVolume 13
[6]   Exceptional points in atomic spectra [J].
Cartarius, Holger ;
Main, Jorg ;
Wunner, Gunter .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[7]   Exceptional points enhance sensing in an optical microcavity [J].
Chen, Weijian ;
Ozdemir, Sahin Kaya ;
Zhao, Guangming ;
Wiersig, Jan ;
Yang, Lan .
NATURE, 2017, 548 (7666) :192-+
[8]   Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points [J].
Choi, Youngsun ;
Hahn, Choloong ;
Yoon, Jae Woong ;
Song, Seok Ho ;
Berini, Pierre .
NATURE COMMUNICATIONS, 2017, 8
[9]   Signatures of three coalescing eigenfunctions [J].
Demange, Gilles ;
Graefe, Eva-Maria .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (02)
[10]   Encircling an exceptional point -: art. no. 056216 [J].
Dembowski, C ;
Dietz, B ;
Gräf, HD ;
Harney, HL ;
Heine, A ;
Heiss, WD ;
Richter, A .
PHYSICAL REVIEW E, 2004, 69 (05) :7