Conditional Lie-Backlund symmetries and invariant subspaces to non-linear diffusion equations

被引:14
作者
Ji, Lina [1 ,2 ]
Qu, Changzheng [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
[2] Henan Agr Univ, Dept Informat & Computat Sci, Zhengzhou 450002, Peoples R China
基金
美国国家科学基金会;
关键词
conditional Lie-Backlund symmetries; invariant subspaces; non-linear diffusion equations; finite-dimensional dynamical systems; LINEAR HEAT-EQUATIONS; SIGN-INVARIANTS; PARABOLIC EQUATIONS; EXPLICIT SOLUTIONS; REDUCTIONS; SEPARATION; CONVECTION; VARIABLES; WAVES;
D O I
10.1093/imamat/hxq069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the n-dimensional radially symmetric non-linear diffusion equations with source term u(t) = 1/r(n-1) [r(n-1)D(u)u(r)(m)](r) + Q(r, u). Equations admitting conditional Lie-B " acklund symmetries sigma = [g(u)](lr) + a(1)(r)[g(u)]((l-1)r) + ... + a(l)(r)g(u) are identified. The resulting equations associated with the invariant subspaces determined by the linear ordinary differential equation v(lr) + a(1)(r)(v(l-1)r) + ... + a(l)(r)(v) = 0 are either solved exactly or reduced to solving some finitedimensional dynamical systems.
引用
收藏
页码:610 / 632
页数:23
相关论文
共 48 条