Rydberg-atom-based scheme of nonadiabatic geometric quantum computation

被引:99
|
作者
Zhao, P. Z. [1 ]
Cui, Xiao-Dan [1 ]
Xu, G. F. [1 ,2 ]
Sjoqvist, Erik [2 ]
Tong, D. M. [1 ]
机构
[1] Shandong Univ, Dept Phys, Jinan 250100, Shandong, Peoples R China
[2] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
DECOHERENCE-FREE SUBSPACES; EXPERIMENTAL REALIZATION; GATES; PHASE; BLOCKADE; SYSTEMS; REGIME;
D O I
10.1103/PhysRevA.96.052316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonadiabatic geometric quantum computation provides a means to perform fast and robust quantum gates. It has been implemented in various physical systems, such as trapped ions, nuclear magnetic resonance, and superconducting circuits. Another system being adequate for implementation of nonadiabatic geometric quantum computation may be Rydberg atoms, since their internal states have very long coherence time and the Rydberg-mediated interaction facilitates the implementation of a two-qubit gate. Here, we propose a scheme of nonadiabatic geometric quantum computation based on Rydberg atoms, which combines the robustness of nonadiabatic geometric gates with the merits of Rydberg atoms.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
    武博
    姚佳伟
    吴逢川
    安强
    付云起
    Chinese Physics B, 2024, 33 (02) : 423 - 428
  • [32] Invariant-based inverse engineering for fast nonadiabatic geometric quantum computation
    Li, Wei
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [33] Nonadiabatic geometric quantum computation with asymmetric superconducting quantum interference device
    Hao, SR
    Hou, BY
    Xi, XQ
    Yue, RH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (03) : 285 - 291
  • [34] Rydberg-atom-based controlled arbitrary-phase gate and its applications
    Zhu, Xiao-Yu
    Liang, Erjun
    Su, Shi-Lei
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (07) : 1937 - 1944
  • [35] Rydberg-atom-based single-photon detection for haloscope axion searches
    Graham, Eleanor
    Ghosh, Sumita
    Zhu, Yuqi
    Bai, Xiran
    Cahn, Sidney B.
    Durcan, Elsa
    Jewell, Michael J.
    Speller, Danielle H.
    Zacarias, Sabrina M.
    Zhou, Laura T.
    Maruyama, Reina H.
    PHYSICAL REVIEW D, 2024, 109 (03)
  • [36] Nonadiabatic geometric quantum computation with shortened path on superconducting circuits
    Ding, Cheng-Yun
    Liang, Yan
    Yu, Kai-Zhi
    Xue, Zheng-Yuan
    APPLIED PHYSICS LETTERS, 2021, 119 (18)
  • [37] Simple construction of Rydberg quantum cloning machines via nonadiabatic geometric quantum operations
    Zhu, X. -Y.
    Fang, B. -L.
    Li, Y. -H.
    Guo, F. -Q.
    Liang, E. -J.
    Yan, L. -L.
    Su, S. -L.
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [38] Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
    Xu, Jing
    Li, Sai
    Chen, Tao
    Xue, Zheng-Yuan
    FRONTIERS OF PHYSICS, 2020, 15 (04)
  • [39] Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
    Jing Xu
    Sai Li
    Tao Chen
    Zheng-Yuan Xue
    Frontiers of Physics, 2020, 15
  • [40] Nonadiabatic geometric quantum computation in non-Hermitian systems
    Hou, Tian -Xiang
    Li, Wei
    PHYSICAL REVIEW A, 2024, 109 (02)