A Low-Power High-Efficiency Adaptive Energy Harvesting Circuit for Broadband Piezoelectric Vibration Energy Harvester

被引:3
作者
Zou, Aicheng [1 ,2 ]
Liu, Zhong [2 ]
Han, Xingguo [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Mech Engn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
piezoelectric; vibration energy harvester; low-power; high-efficiency; circuit; LUMPED-PARAMETER MODEL; ASYMMETRIC HYSTERESIS; OPTIMIZATION; INTERFACE; IDENTIFICATION;
D O I
10.3390/act10120327
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Existing piezoelectric vibration energy harvesting circuits require auxiliary power for the switch control module and are difficult to adapt to broadband piezoelectric vibration energy harvesters. This paper proposes a self-powered and low-power enhanced double synchronized switch harvesting (EDSSH) circuit. The proposed circuit consists of a low-power follow-up switch control circuit, reverse feedback blocking-up circuit, synchronous electric charge extraction circuit and buck-boost circuit. The EDSSH circuit can automatically adapt to the sinusoidal voltage signal with the frequency of 1 to 312.5 Hz that is output by the piezoelectric vibration energy harvester. The switch control circuit of the EDSSH circuit works intermittently for a very short time near the power extreme point and consumes a low amount of electric energy. The reverse feedback blocking-up circuit of the EDSSH circuit can keep the transmission efficiency at the optimal value. By using a charging capacitor of 1 mF, the charging efficiency of the proposed EDSSH circuit is 1.51 times that of the DSSH circuit.
引用
收藏
页数:21
相关论文
共 85 条
[1]   Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring [J].
A. Trasvina-Moreno, Carlos ;
Blasco, Ruben ;
Marco, Alvaro ;
Casas, Roberto ;
Trasvina-Castro, Armando .
SENSORS, 2017, 17 (03)
[2]   An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations [J].
Abdelkefi, A. ;
Najar, F. ;
Nayfeh, A. H. ;
Ben Ayed, S. .
SMART MATERIALS & STRUCTURES, 2011, 20 (11)
[3]   Increased mechanical robustness of piezoelectric magnetoelastic vibrational energy harvesters [J].
Alcala-Jimenez, L. R. ;
Jensen, T. P. ;
Lei, A. ;
Thomsen, E., V .
MICROELECTRONIC ENGINEERING, 2019, 207 :19-26
[4]   Piezoelectric energy harvesting using a synchronized switch technique [J].
Badel, Adrien ;
Guyomar, Daniel ;
Lefeuvre, Elie ;
Richard, Claude .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2006, 17 (8-9) :831-839
[5]   A High Precision Lumped Parameter Model for Piezoelectric Energy Harvesters [J].
Baishya, Srimanta ;
Borthakur, Debarun ;
Kashyap, Richik ;
Chatterjee, Amitabh .
IEEE SENSORS JOURNAL, 2017, 17 (24) :8350-8355
[6]  
Billings SA, 2013, NONLINEAR SYSTEM IDENTIFICATION: NARMAX METHODS IN THE TIME, FREQUENCY, AND SPATIO-TEMPORAL DOMAINS, P1, DOI 10.1002/9781118535561
[7]   Quick self-start and minimum power-loss management circuit for impact-type micro wind piezoelectric energy harvesters [J].
Chen, Nan ;
Wei, Tingcun ;
Jung, Hyun Jun ;
Lee, Soobum .
SENSORS AND ACTUATORS A-PHYSICAL, 2017, 263 :23-29
[8]   An Efficient CMOS Dual Switch Rectifier for Piezoelectric Energy-Harvesting Circuits [J].
Din, Amad Ud ;
Kamran, Muhammad ;
Mahmood, Wagar ;
Aurangzeb, Khursheed ;
Altamrah, Abdulaziz Saud ;
Lee, Jong-Wook .
ELECTRONICS, 2019, 8 (01)
[9]   A Nanopower Synchronous Charge Extractor IC for Low-Voltage Piezoelectric Energy Harvesting With Residual Charge Inversion [J].
Dini, Michele ;
Romani, Aldo ;
Filippi, Matteo ;
Tartagni, Marco .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (02) :1263-1274
[10]   Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam [J].
Eichhorn, C. ;
Goldschmidtboeing, F. ;
Woias, P. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (09)