Differential Evolution: A survey of theoretical analyses

被引:317
作者
Opara, Karol R. [1 ]
Arabas, Jaroslaw [2 ]
机构
[1] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
[2] Warsaw Univ Technol, Inst Comp Sci, Warsaw, Poland
关键词
DE population dynamics; Diversity; Convergence; Global optimization; Evolutionary algorithm; CONVERGENCE ANALYSIS; POPULATION-DYNAMICS; DRIFT ANALYSIS; NO FREE; ALGORITHMS; OPTIMIZATION; CROSSOVER; SELECTION; SPACE; SIZE;
D O I
10.1016/j.swevo.2018.06.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential Evolution (DE) is a state-of-the art global optimization technique. Considerable research effort has been made to improve this algorithm and apply it to a variety of practical problems. Nevertheless, analytical studies concerning DE are rather rare. This paper surveys the theoretical results obtained so far for DE. A discussion of genetic operators characteristic of DE is coupled with an overview of the population diversity and dynamics models. A comprehensive view on the current-day understanding of the underlying mechanisms of DE is complemented by a list of promising research directions.
引用
收藏
页码:546 / 558
页数:13
相关论文
共 88 条
[1]   Differential evolution with preferential crossover [J].
Ali, M. M. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1137-1147
[2]   A differential free point generation scheme in the differential evolution algorithm [J].
Ali, M. M. ;
Fatti, L. P. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (04) :551-572
[3]  
Altenberg L., 1994, FDN GENETIC ALGORITH, V3, P23, DOI DOI 10.1016/B978-1-55860-356-1.50006-6
[4]  
[Anonymous], 2010, REPRESENTATIONS GENE
[5]  
[Anonymous], 1989, GENETIC ALGORITHMS S
[6]   Improving Evolutionary Algorithms in a Continuous Domain by Monitoring the Population Midpoint [J].
Arabas, Jaroslaw ;
Biedrzycki, Rafal .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (05) :807-812
[7]   Approximating the Genetic Diversity of Populations in the Quasi-Equilibrium State [J].
Arabas, Jaroslaw .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2012, 16 (05) :632-644
[8]  
Arabas J, 2010, LECT NOTES COMPUT SC, V6239, P411, DOI 10.1007/978-3-642-15871-1_42
[9]  
Back T., 1997, Handbook of Evolutionary Computation
[10]   How to analyse evolutionary algorithms [J].
Beyer, HG ;
Schwefel, HP ;
Wegener, I .
THEORETICAL COMPUTER SCIENCE, 2002, 287 (01) :101-130