Thermoelectric performance of (GeTe)1-x(Sb2Te3)x fabricated by high pressure sintering method

被引:6
作者
Dong, Yuan [1 ]
Li, Hongtao [1 ]
Xu, Guiying [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Municipal Key Lab Adv Energy Mat & Techno, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
关键词
thermoelectric; high pressure sintering; GeTe-based materials; DEFECT STRUCTURE; FIGURE; MERIT; POWER; GETE;
D O I
10.1088/2053-1591/ab6c1f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
(GeTe)(1-x)(Sb2Te3)(x) is one of good middle temperature thermoelectric materials. Here, the effects of x values and heat treatment (673 K24 h) on the thermoelectric property of (GeTe)(1-x)(Sb2Te3)(x) (x = 0, 0.02, 0.04, 0.06) prepared by solid-state synthesis (873 K) and high pressure sintering (6 GPa) method were studied, the composition, microstructure, and the thermoelectric properties in temperature range of 300-731 K were investigated. The results indicate that high pressure sintering (HPS) is beneficial to the dissolution of Sb2Te3 in GeTe and the acquisition of nanocrystalline (GeTe)(1-x)(Sb2Te3)(x). Soluble Sb2Te3 can greatly change the crystal structure of GeTe, and results in the high pressure phase and different thermoelectric property in (GeTe)(1-x)(Sb2Te3)(x) (x not equal 0). Heat treatment does not change the high pressure phase of (GeTe)(1-x)(Sb2Te3)(x) (x not equal 0), meanwhile it increases the crystal grain size of (GeTe)(1-x)(Sb2Te3)(x) (x not equal 0). Samples of x = 0.04 and x = 0.06 show the maximum Seebeck coefficient value at 724 K, and (GeTe)(0.98)(Sb2Te3)(0.02) shows the highest power factor (PF = 3.70 mu W/mmK(2) at 724 K). The largest value of ZT = 0.56 at 724 K is obtained for (GeTe)(0.94)(Sb2Te3)(0.06).
引用
收藏
页数:10
相关论文
共 42 条
[1]   The origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructures [J].
Banik, Ananya ;
Vishal, Badri ;
Perumal, Suresh ;
Datta, Ranjan ;
Biswas, Kanishka .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2011-2019
[2]   Thermoelectric properties of electrically gated bismuth telluride nanowires [J].
Bejenari, I. ;
Kantser, V. ;
Balandin, A. A. .
PHYSICAL REVIEW B, 2010, 81 (07)
[3]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Strained endotaxial nanostructures with high thermoelectric figure of merit [J].
Biswas, Kanishka ;
He, Jiaqing ;
Zhang, Qichun ;
Wang, Guoyu ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE CHEMISTRY, 2011, 3 (02) :160-166
[6]   Transport properties and valence band feature of high-performance (GeTe)85(AgSbTe2)15 thermoelectric materials [J].
Chen, Y. ;
Jaworski, C. M. ;
Gao, Y. B. ;
Wang, H. ;
Zhu, T. J. ;
Snyder, G. J. ;
Heremans, J. P. ;
Zhao, X. B. .
NEW JOURNAL OF PHYSICS, 2014, 16
[7]   THERMOELECTRIC-POWER OF (GETE)1-X(BI2TE3)X SOLID-SOLUTIONS (0-LESS-THAN-OR-EQUAL-TO-X-LESS-THAN-OR-EQUAL-TO-0.05) IN THE TEMPERATURE INTERVAL 80-K TO 350-K [J].
CHRISTAKUDI, TA ;
PLACHKOVA, SK ;
CHRISTAKUDIS, GC .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1995, 147 (01) :211-220
[8]  
Eden H, ADV ELECTRON, V1
[9]   High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates [J].
Fahrnbauer, Felix ;
Souchay, Daniel ;
Wagner, Gerald ;
Oeckler, Oliver .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (39) :12633-12638
[10]   Thermoelectric properties of Ag8GeTe6 [J].
Fujikane, M ;
Kurosaki, K ;
Muta, H ;
Yamanaka, S .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 396 (1-2) :280-282