Optimal simulation of linear multiprocessor architectures on multiply-twisted cube using generalized Gray Codes

被引:23
作者
Zheng, SQ [1 ]
Latifi, S [1 ]
机构
[1] UNIV NEVADA,DEPT ELECT & COMP ENGN,LAS VEGAS,NV 89154
关键词
Gray Code; interconnection network; hypercube; multiply-twisted cube; linear array; ring; parallel computing simulation;
D O I
10.1109/71.506700
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article, we consider the problem of simulating linear arrays and rings on the multiply-twisted cube. We introduce a new concept, the reflected link label sequence, and use it to define a generalized Gray Code (GGC). We show that GGC's can be easily used to identify Hamiltonian paths and cycles in the multiply-twisted cube. We also give a method for embedding a ring of arbitrary number of nodes into the multiply-twisted cube.
引用
收藏
页码:612 / 619
页数:8
相关论文
共 13 条
[1]  
BHUYAN LN, 1984, IEEE T COMPUT, V33, P323, DOI 10.1109/TC.1984.1676437
[2]   PROCESSOR ALLOCATION IN AN N-CUBE MULTIPROCESSOR USING GRAY CODES [J].
CHEN, MS ;
SHIN, KG .
IEEE TRANSACTIONS ON COMPUTERS, 1987, 36 (12) :1396-1407
[3]   NUMBER OF HAMILTONIAN CIRCUITS IN N-CUBE [J].
DIXON, E ;
GOODMAN, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) :500-504
[4]   THE CROSSED CUBE ARCHITECTURE FOR PARALLEL COMPUTATION [J].
EFE, K .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1992, 3 (05) :513-524
[5]   A VARIATION ON THE HYPERCUBE WITH LOWER DIAMETER [J].
EFE, K .
IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (11) :1312-1316
[6]  
EFE K, 1990, 9082 U SW LOUIS CTR
[7]   PROPERTIES AND PERFORMANCE OF FOLDED HYPERCUBES [J].
ELAMAWY, A ;
LATIFI, S .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1991, 2 (01) :31-42
[8]   THE TWISTED N-CUBE WITH APPLICATION TO MULTIPROCESSING [J].
ESFAHANIAN, AH ;
NI, LM ;
SAGAN, BE .
IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (01) :88-93
[9]   COMMUNICATION EFFICIENT BASIC LINEAR ALGEBRA COMPUTATIONS ON HYPERCUBE ARCHITECTURES [J].
JOHNSSON, SL .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1987, 4 (02) :133-172
[10]   INCOMPLETE HYPERCUBES [J].
KATSEFF, HP .
IEEE TRANSACTIONS ON COMPUTERS, 1988, 37 (05) :604-608