Direct nonadiabatic quantum dynamics simulations of the photodissociation of phenol

被引:14
作者
Christopoulou, Georgia [1 ]
Tran, Thierry [1 ,2 ]
Worth, Graham A. [1 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Imperial Coll London, Dept Chem, White City Campus, London W12 0BZ, England
关键词
POTENTIAL-ENERGY SURFACES; AROMATIC-MOLECULES; NUCLEAR MOTION; PHOTOCHEMISTRY; STATES; DETACHMENT; PHOTOLYSIS; ALGORITHM; ELECTRON; SYSTEM;
D O I
10.1039/d1cp01843d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gaussian wavepacket methods are becoming popular for the investigation of nonadiabatic molecular dynamics. In the present work, a recently developed efficient algorithm for the Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method has been used to describe the multidimensional photodissociation dynamics of phenol including all degrees of freedom. Full-dimensional quantum dynamic calculations including for the first time six electronic states ((1)pi pi, 1(1)pi pi*, 1(1)pi sigma*, 2(1)pi sigma*, 2(1)pi pi*, 3(1)pi pi*), along with a comparison to an existing analytical 4-state model for the potential energy surfaces are presented. Including the fifth singlet excited state is shown to have a significant effect on the nonadiabatic photodissociation of phenol to the phenoxyl radical and hydrogen atom. State population and flux analysis from the DD-vMCG simulations of phenol provided further insights into the decay mechanism, confirming the idea of rapid relaxation to the ground state through the (1)pi pi/1(1)pi sigma* conical intersection.
引用
收藏
页码:23684 / 23695
页数:12
相关论文
共 50 条
[21]   Nonadiabatic Dynamics in Photodissociation of Hydroxymethyl in the 32A(3px) Rydberg State: A Nine-Dimensional Quantum Study [J].
Xie, Changjian ;
Malbon, Christopher L. ;
Xie, Daiqian ;
Yarkony, David R. ;
Guo, Hua .
JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (10) :1937-1944
[22]   Non-adiabatic direct quantum dynamics using force fields: Toward solvation [J].
Cigrang, L. L. E. ;
Green, J. A. ;
Gomez, S. ;
Cerezo, J. ;
Improta, R. ;
Prampolini, G. ;
Santoro, F. ;
Worth, G. A. .
JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (17)
[23]   Ab initio quantum dynamical study of the multi-state nonadiabatic photodissociation of pyrrole [J].
Faraji, S. ;
Vazdar, M. ;
Reddy, V. Sivaranjana ;
Eckert-Maksic, M. ;
Lischka, H. ;
Koeppel, H. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (15)
[24]   Quantum Dynamics of Photodissociation: Recent Advances and Challenges [J].
Han, Shanyu ;
Xie, Changjian ;
Hu, Xixi ;
Yarkony, David R. ;
Guo, Hua ;
Xie, Daiqian .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (47) :10517-10530
[25]   Photodissociation Dynamics of C2H4BrCl: Nonadiabatic Dynamics with Intrinsic Cs Symmetry [J].
Lee, Kyoung-Seok ;
Paul, Dababrata ;
Hong, Kiryong ;
Cho, Ha Na ;
Jung, Kwang-Woo ;
Kim, Tae Kyu .
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2009, 30 (12) :2962-2968
[26]   Machine Learning-Assisted Mixed Quantum-Classical Dynamics without Explicit Nonadiabatic Coupling: Application to the Photodissociation of Peroxynitric Acid [J].
Sit, Mahesh K. ;
Das, Subhasish ;
Samanta, Kousik .
JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (38) :8244-8253
[27]   A Tractable Numerical Model for Exploring Nonadiabatic Quantum Dynamics [J].
Camrud, Evan ;
Turner, Daniel B. .
JOURNAL OF CHEMICAL EDUCATION, 2017, 94 (05) :582-591
[28]   Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections [J].
Titov, Evgenii ;
Humeniuk, Alexander ;
Mitric, Roland .
CHEMICAL PHYSICS, 2020, 528
[29]   Nonadiabatic quantum dynamics without potential energy surfaces [J].
Albareda, Guillermo ;
Kelly, Aaron ;
Rubio, Angel .
PHYSICAL REVIEW MATERIALS, 2019, 3 (02)
[30]   Controlling Product Selection in the Photodissociation of Formaldehyde: Direct Quantum Dynamics from the S1 Barrier [J].
Araujo, Marta ;
Lasorne, Benjamin ;
Magalhaes, Alexandre L. ;
Bearpark, Michael ;
Robb, Michael A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (45) :12016-12020