Size-Fractionated Primary Production and Chlorophyll in the Kara Sea during the First-Year Ice Retreat

被引:13
作者
Demidov, A. B. [1 ]
Sergeeva, V. M. [1 ]
Gagarin, V., I [1 ]
Eremeeva, E., V [1 ]
Vorobieva, O. V. [2 ]
Belevich, T. A. [3 ]
Artemiev, V. A. [1 ]
Polukhin, A. A. [1 ]
Grigoriev, A., V [1 ]
Khrapko, A. N. [1 ]
Shchuka, S. A. [1 ]
Flint, M., V [1 ]
机构
[1] Russian Acad Sci, Shirshov Inst Oceanol, Moscow 117218, Russia
[2] Russian Fed Res Inst Fisheries & Oceanog, Moscow, Russia
[3] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
primary production; chlorophyll a; assimilation number; phytoplankton bloom; size structure of phytoplankton community; Kara Sea; PHYTOPLANKTON COMMUNITY; WATER POLYNYA; CELL-SIZE; IN-SITU; BLOOMS; CARBON; DOMINANCE; PATTERNS; NUTRIENT; CHUKCHI;
D O I
10.1134/S0001437022030031
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The distribution of primary production (PP), chlorophyll a concentration (Chl a), and size structure of the phytoplankton community were studied in the Kara Sea during the first-year ice retreat in late June 2021. The maximum value of water column PP (IPP) reached 1352 mgC m(-2) day(-1). The ice-edge phytoplankton bloom was characterized by high averaged of IPP and Chl a integrated in the photosynthetic layer (Chl(phs)) values: 740 mgC m(-2) day(-1) and 81.40 mg m(-2), respectively. The highest IPP values were observed at sites where Chl a was concentrated in the upper mixed layer or where the subsurface chlorophyll maximum coincided with the pycnocline. Over the area of phytoplankton bloom, the contribution of microphytoplankton (>20 mu m) to the total IPP and Chl(phs) was 92 and 82%, respectively. Contribution of picophytoplankton (<3 mu m) to the total PP increased along the depth until reaching the lower margin of layer of photosynthesis, from 3 to 70%, on average. No similar pattern has been observed for vertical distribution of Chl a. This pattern was evidenced by an increase in the chlorophyll specific carbon fixation rate (assimilation number) of picophytoplankton with depth under low insolation conditions.
引用
收藏
页码:346 / 357
页数:12
相关论文
共 61 条
[1]   Biogeographical patterns of phytoplankton community size structure in the oceans [J].
Acevedo-Trejos, Esteban ;
Brandt, Gunnar ;
Merico, Agostino ;
Smith, S. Lan .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2013, 22 (09) :1060-1070
[2]   Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production [J].
Agawin, NSR ;
Duarte, CM ;
Agustí, S .
LIMNOLOGY AND OCEANOGRAPHY, 2000, 45 (03) :591-600
[3]  
[Anonymous], 1952, J. Cons. Perm. Int. Explor. Mer, DOI [DOI 10.1093/ICESJMS/18.2.117, 10.1093/icesjms/18.2.117]
[4]   Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates [J].
Ardyna, M. ;
Babin, M. ;
Gosselin, M. ;
Devred, E. ;
Belanger, S. ;
Matsuoka, A. ;
Tremblay, J. -E. .
BIOGEOSCIENCES, 2013, 10 (06) :4383-4404
[5]   Under-Ice Phytoplankton Blooms: Shedding Light on the "Invisible" Part of Arctic Primary Production [J].
Ardyna, Mathieu ;
Mundy, C. J. ;
Mayot, Nicolas ;
Matthes, Lisa C. ;
Oziel, Laurent ;
Horvat, Christopher ;
Leu, Eva ;
Assmy, Philipp ;
Hill, Victoria ;
Matrai, Patricia A. ;
Gale, Matthew ;
Melnikov, Igor A. ;
Arrigo, Kevin R. .
FRONTIERS IN MARINE SCIENCE, 2020, 7
[6]   Secular trends in Arctic Ocean net primary production [J].
Arrigo, Kevin R. ;
van Dijken, Gert L. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[7]   Phytoplankton blooms beneath the sea ice in the Chukchi sea [J].
Arrigo, Kevin R. ;
Perovich, Donald K. ;
Pickart, Robert S. ;
Brown, Zachary W. ;
van Dijken, Gert L. ;
Lowry, Kate E. ;
Mills, Matthew M. ;
Palmer, Molly A. ;
Balch, William M. ;
Bates, Nicholas R. ;
Benitez-Nelson, Claudia R. ;
Brownlee, Emily ;
Frey, Karen E. ;
Laney, Samuel R. ;
Mathis, Jeremy ;
Matsuoka, Atsushi ;
Mitchell, B. Greg ;
Moore, G. W. K. ;
Reynolds, Rick A. ;
Sosik, Heidi M. ;
Swift, James H. .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2014, 105 :1-16
[8]   Massive Phytoplankton Blooms Under Arctic Sea Ice [J].
Arrigo, Kevin R. ;
Perovich, Donald K. ;
Pickart, Robert S. ;
Brown, Zachary W. ;
van Dijken, Gert L. ;
Lowry, Kate E. ;
Mills, Matthew M. ;
Palmer, Molly A. ;
Balch, William M. ;
Bahr, Frank ;
Bates, Nicholas R. ;
Benitez-Nelson, Claudia ;
Bowler, Bruce ;
Brownlee, Emily ;
Ehn, Jens K. ;
Frey, Karen E. ;
Garley, Rebecca ;
Laney, Samuel R. ;
Lubelczyk, Laura ;
Mathis, Jeremy ;
Matsuoka, Atsushi ;
Mitchell, B. Greg ;
Moore, G. W. K. ;
Ortega-Retuerta, Eva ;
Pal, Sharmila ;
Polashenski, Chris M. ;
Reynolds, Rick A. ;
Schieber, Brian ;
Sosik, Heidi M. ;
Stephens, Michael ;
Swift, James H. .
SCIENCE, 2012, 336 (6087) :1408-1408
[9]   Primary productivity in the Arctic Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates [J].
Arrigo, Kevin R. ;
Matrai, Patricia A. ;
van Dijken, Gert L. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[10]   Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding [J].
Belanger, S. ;
Babin, M. ;
Tremblay, J. -E. .
BIOGEOSCIENCES, 2013, 10 (06) :4087-4101