Strong, Ultrafast, Reprogrammable Hydrogel Actuators with Muscle-Mimetic Aligned Fibrous Structures

被引:67
作者
Jiang, Zhen [1 ,2 ]
Seraji, Seyed Mohsen [1 ]
Tan, Xiao [2 ]
Zhang, Xinxing [3 ]
Dinh, Toan [4 ]
Mollazade, Mahdie [2 ]
Rowan, Alan E. [2 ]
Whittaker, Andrew K. [2 ,5 ,6 ]
Song, Pingan [1 ]
Wang, Hao [1 ]
机构
[1] Univ Southern Queensland, Ctr Future Mat, Springfield Cent, Qld 4300, Australia
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld 4072, Australia
[3] Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[4] Univ Southern Queensland, Sch Mech & Elect Engn, Darling Hts, Qld 4350, Australia
[5] Univ Queensland, St Lucia, Qld 4072, Australia
[6] Univ Queensland, ARC Ctr Excellence Convergent Bionano Sci & Techn, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
TOUGH SUPRAMOLECULAR HYDROGELS; SHAPE; NETWORKS;
D O I
10.1021/acs.chemmater.1c02312
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogel actuators displaying programmable shape transformations promise to be core components in future biomedical and soft robotic devices. However, current hydrogel actuators have shortcomings, including poor mechanical properties, slow response, and lack of shape reprogrammability, which limit their practical applications. Existing molecular designs offer limited efficiency in synergistically addressing these issues in a single hydrogel system. Herein, we propose a strategy to develop hydrogel actuators with muscle-mimetic aligned microfibrillar morphology, combining thermoinduced microphase separation and mechanical alignment. The key to our design is the introduction of metal-phenolic complexes, which not only induce irreversible sol-gel transition via the concentrated coordinate ions above lower critical solution temperature (LCST) but also fix the alignment of bundle network due to dynamic network rearrangement. Our design concept is observed to simultaneously achieve excellent mechanical properties (tensile strength approximate to 1.27 MPa, toughness approximate to 2.0 MJ m(-3)) and ultrafast actuation (40.1% thermal contraction as short as 1 s), which is a long-lasting challenge in the field. In addition, the dynamic hydrogels can be reprogrammed into spiral, helical, and biomimetic actuators. This work opens new opportunities to realize real-world applications for smart hydrogels as soft machines by fundamentally breaking the current property limit.
引用
收藏
页码:7818 / 7828
页数:11
相关论文
共 66 条
[1]   Tunable Sponge-Like Hierarchically Porous Hydrogels with Simultaneously Enhanced Diffusivity and Mechanical Properties [J].
Alsaid, Yousif ;
Wu, Shuwang ;
Wu, Dong ;
Du, Yingjie ;
Shi, Lingxia ;
Khodambashi, Roozbeh ;
Rico, Rossana ;
Hua, Mutian ;
Yan, Yichen ;
Zhao, Yusen ;
Aukes, Daniel ;
He, Ximin .
ADVANCED MATERIALS, 2021, 33 (20)
[2]   Ultrarobust Ti3C2Tx MXene-Based Soft Actuators via Bamboo-Inspired Mesoscale Assembly of Hybrid Nanostructures [J].
Cao, Jie ;
Zhou, Zehang ;
Song, Quancheng ;
Chen, Keyu ;
Su, Gehong ;
Zhou, Tao ;
Zheng, Zhuo ;
Lu, Canhui ;
Zhang, Xinxing .
ACS NANO, 2020, 14 (06) :7055-7065
[3]   Anisotropic thermoresponsive hydrogels by mechanical force orientation of clay nanosheets [J].
Chen, Lie ;
Wu, Qingshan ;
Zhang, Jianqi ;
Zhao, Tianyi ;
Jin, Xu ;
Liu, Mingjie .
POLYMER, 2020, 192
[4]   Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators [J].
Chen, Tingting ;
Bakhshi, Hadi ;
Liu, Li ;
Ji, Jian ;
Agarwal, Seema .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (19)
[5]   Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators [J].
Chin, Stacey M. ;
Synatschke, Christopher V. ;
Liu, Shuangping ;
Nap, Rikkert J. ;
Sather, Nicholas A. ;
Wang, Qifeng ;
Alvarez, Zaida ;
Edelbrock, Alexandra N. ;
Fyrner, Timmy ;
Palmer, Liam C. ;
Szleifer, Igal ;
de la Cruz, Monica Olvera ;
Stupp, Samuel I. .
NATURE COMMUNICATIONS, 2018, 9
[6]   Tough supramolecular hydrogels with excellent self-recovery behavior mediated by metal-coordination interaction [J].
Ding, Hongyao ;
Liang, Xiaoxu ;
Zhang, Xin Ning ;
Wu, Zi Liang ;
Li, Zongjin ;
Sun, Guoxing .
POLYMER, 2019, 171 :201-210
[7]   Transformer Hydrogels: A Review [J].
Erol, Ozan ;
Pantula, Aishwarya ;
Liu, Wangqu ;
Gracias, David H. .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (04)
[8]   Supramolecular Hydrogel Formation Based on Tannic Acid [J].
Fan, Hailong ;
Wang, Le ;
Feng, Xunda ;
Bu, Yazhong ;
Wu, Decheng ;
Jin, Zhaoxia .
MACROMOLECULES, 2017, 50 (02) :666-676
[9]   Modular 4D Printing via Interfacial Welding of Digital Light-Controllable Dynamic Covalent Polymer Networks [J].
Fang, Zizheng ;
Song, Huijie ;
Zhang, Yue ;
Jin, Binjie ;
Wu, Jingjun ;
Zhao, Qian ;
Xie, Tao .
MATTER, 2020, 2 (05) :1187-1197
[10]   Actuation of Three-Dimensional-Printed Nanocolloidal Hydrogel with Structural Anisotropy [J].
Gevorkian, Albert ;
Morozova, Sofia M. ;
Kheiri, Sina ;
Khuu, Nancy ;
Chen, Heyu ;
Young, Edmond ;
Yan, Ning ;
Kumacheva, Eugenia .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (17)