Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen

被引:60
作者
Adda-Bedia, M. [1 ]
Kumar, S. [1 ]
Lechenault, F. [1 ]
Moulinet, S. [1 ]
Schillaci, M. [1 ]
Vella, D. [2 ]
机构
[1] Univ Paris 04, UPMC, Ecole Normale Super, CNRS,Lab Phys Stat, 24 Rue Lhomond, F-75005 Paris, France
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
欧洲研究理事会;
关键词
THERMAL-CONDUCTIVITY; VISCOSITY; ARGON; WATER;
D O I
10.1021/acs.langmuir.6b00574
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density rho(d) of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R >= R-c(rho(d)), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,rho(d)) parameter space that separates them.
引用
收藏
页码:4179 / 4188
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 1966, CHEM ENG NEWS, P44
[2]  
Batchelor GK, 1967, An introduction to fluid dynamics
[3]   Leidenfrost drops [J].
Biance, AL ;
Clanet, C ;
Quéré, D .
PHYSICS OF FLUIDS, 2003, 15 (06) :1632-1637
[4]   Geometry of the Vapor Layer Under a Leidenfrost Drop [J].
Burton, J. C. ;
Sharpe, A. L. ;
van der Veen, R. C. A. ;
Franco, A. ;
Nagel, S. R. .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[5]   Pilot-Wave Hydrodynamics [J].
Bush, John W. M. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 47, 2015, 47 :269-292
[6]   Take Off of Small Leidenfrost Droplets [J].
Celestini, Franck ;
Frisch, Thomas ;
Pomeau, Yves .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[7]   Effect of an electric field on a Leidenfrost droplet [J].
Celestini, Franck ;
Kirstetter, Geoffroy .
SOFT MATTER, 2012, 8 (22) :5992-5995
[8]   From bouncing to floating: Noncoalescence of drops on a fluid bath [J].
Couder, Y ;
Fort, E ;
Gautier, CH ;
Boudaoud, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[9]  
Dana L. I., 1925, P AM ACAD ARTS SCI, P241
[10]   Transient boiling crisis of cryogenic liquids [J].
Deev, VI ;
Kharitonov, VS ;
Kutsenko, KV ;
Lavrukhin, AA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (25) :5477-5482