Continuous-time random walk as a guide to fractional Schrodinger equation

被引:15
|
作者
Lenzi, E. K. [1 ]
Ribeiro, H. V. [1 ]
Mukai, H. [1 ]
Mendes, R. S. [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
关键词
differential equations; diffusion; Markov processes; random processes; Schrodinger equation; LEVY FLIGHTS; DIFFUSION;
D O I
10.1063/1.3491333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We argue that the continuous-time random walk approach may be a useful guide to extend the Schrodinger equation in order to incorporate nonlocal effects, avoiding the inconsistencies raised by Jeng et al. [J. Math. Phys. 51, 062102 (2010)]. As an application, we work out a free particle in a half space, obtaining the time dependent solution by considering an arbitrary initial condition. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491333]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Integrodifferential diffusion equation for continuous-time random walk
    Fa, Kwok Sau
    Wang, K. G.
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [2] DERIVATION OF THE CONTINUOUS-TIME RANDOM-WALK EQUATION
    KLAFTER, J
    SILBEY, R
    PHYSICAL REVIEW LETTERS, 1980, 44 (02) : 55 - 58
  • [3] Continuous-time random walk and parametric subordination in fractional diffusion
    Gorenflo, Rudolf
    Mainardi, Francesco
    Vivoli, Alessandro
    CHAOS SOLITONS & FRACTALS, 2007, 34 (01) : 87 - 103
  • [4] A fractional diffusion equation for two-point probability distributions of a continuous-time random walk
    Baule, A.
    Friedrich, R.
    EPL, 2007, 77 (01)
  • [5] THE CONTINUOUS-TIME RANDOM WALK VERSUS THE GENERALIZED MASTER EQUATION
    Grigolini, Paolo
    FRACTALS, DIFFUSION, AND RELAXATION IN DISORDERED COMPLEX SYSTEMS, PART A, 2006, 133 : 357 - 474
  • [6] Quantum continuous time random walk in nonlinear Schrodinger equation with disorder
    Iomin, A.
    CHAOS SOLITONS & FRACTALS, 2016, 93 : 64 - 70
  • [7] On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk
    Mainardi, Francesco
    MATHEMATICS, 2020, 8 (04)
  • [8] CONTINUOUS-TIME RANDOM-WALKS AND THE FRACTIONAL DIFFUSION EQUATION
    ROMAN, HE
    ALEMANY, PA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : 3407 - 3410
  • [9] MULTIENERGETIC CONTINUOUS-TIME RANDOM-WALK
    CACERES, MO
    WIO, HS
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1984, 54 (02): : 175 - 181
  • [10] Dephasing by a continuous-time random walk process
    Packwood, Daniel M.
    Tanimura, Yoshitaka
    PHYSICAL REVIEW E, 2012, 86 (01):