Global existence and blowup of solutions for a parabolic equation with a gradient term

被引:13
作者
Chen, SH [1 ]
机构
[1] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
关键词
parabolic equation; gradient term; global existence; blowup;
D O I
10.1090/S0002-9939-00-05666-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author discusses the semilinear parabolic equation u(t) = Deltau + f(u) + g(u)\delu\(2) with u\partial derivative Ohm = 0; u(x; 0) = phi (x). Under suitable assumptions on f and g, he proves that, if 0 less than or equal to phi less than or equal to lambda psi with lambda < 1, then the solutions are global, while if <phi> greater than or equal to lambda psi with lambda >1, then the solutions blow up in a finite time, where psi is a positive solution of Delta psi + f(psi) + g(psi)\del psi\(2) = 0, with psi\partial derivative Ohm = 0.
引用
收藏
页码:975 / 981
页数:7
相关论文
共 12 条
[1]   EXISTENCE AND MULTIPLICITY THEOREMS FOR SEMI-LINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1976, 150 (03) :281-295
[2]  
Amann H., 1978, Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, P1, DOI DOI 10.1016/B978-0-12-165550-1.50007-0
[3]  
Brezis H., 1996, Adv. Differential Equations, V1, P73
[4]   Global existence and blow-up of solutions for a semilinear parabolic system [J].
Chen, SH ;
Derrick, WR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (02) :449-457
[5]   SOME BLOWUP RESULTS FOR A NONLINEAR PARABOLIC EQUATION WITH A GRADIENT TERM [J].
CHIPOT, M ;
WEISSLER, FB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) :886-907
[6]   STABILIZATION OF SOLUTIONS OF A NONLINEAR PARABOLIC EQUATION WITH A GRADIENT TERM [J].
DENG, K .
MATHEMATISCHE ZEITSCHRIFT, 1994, 216 (01) :147-155
[8]  
GALAKTIONOV VA, 1990, DIFFER INTEGRAL EQU, V3, P863
[9]  
Henry D., 1981, GEOMETRIC THEORY SEM, V840
[10]   OBSERVATIONS ON BLOW UP AND DEAD CORES FOR NONLINEAR PARABOLIC EQUATIONS [J].
KAWOHL, B ;
PELETIER, LA .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :207-217