A three-dimensional magnetic field sensor based on a single spin-orbit-torque device via domain nucleation

被引:6
作者
Guo, Zhe [1 ,2 ]
Li, Ruofan [1 ,2 ]
Zhang, Shuai [1 ,2 ]
Tian, Yufeng [3 ]
Hong, Jeongmin [1 ,2 ]
You, Long [1 ,2 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[4] Shenzhen Huazhong Univ Sci & Technol Res Inst, Shenzhen 518000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
VECTOR;
D O I
10.1063/5.0093949
中图分类号
O59 [应用物理学];
学科分类号
摘要
Detecting a three-dimensional (3D) magnetic field by a compact and simple structure or device has always been a challenging work. The recent discovery of 3D magnetic field sensing through the single spin-orbit torque device consisting of the Ta/CoFeB/MgO heterostructure, based on the domain wall motion, offers a revolutionary way to tackle this problem. Here, we demonstrate a 3D magnetic field sensor based on the W/CoFeB/MgO heterostructure via domain nucleation dominated magnetization reversal. In such a heterostructure, the in-plane (IP) and out-of-plane (OOP) magnetic field components drive the grains reversal with different manners, enabling the distinguishment of the contributions from IP and OOP components. The linear modulations of anomalous Hall resistance by x, y, and z components of magnetic fields have been obtained, respectively, with the same linear range of -20 to +20 Oe for each component. Typically, a higher linearity is realized in this work compared with the previous domain wall motion based sensor, which is a critical characteristic for the magnetic field sensor. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 35 条
[1]   New position detectors based on AMR sensors [J].
Adelerhof, DJ ;
Geven, W .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 85 (1-3) :48-53
[2]   Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors [J].
Borie, B. ;
Kehlberger, A. ;
Wahrhusen, J. ;
Grimm, H. ;
Klaeui, M. .
PHYSICAL REVIEW APPLIED, 2017, 8 (02)
[3]   Small Magnetic Sensors for Space Applications [J].
Diaz-Michelena, Marina .
SENSORS, 2009, 9 (04) :2271-2288
[4]  
dowaytech, TMR2305M SENS IS MUL
[5]   3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs) [J].
Ettelt, Dirk ;
Rey, Patrice ;
Jourdan, Guillaume ;
Walther, Arnaud ;
Robert, Philippe ;
Delamare, Jerome .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2014, 23 (02) :324-333
[6]  
Fukami S, 2016, NAT MATER, V15, P535, DOI [10.1038/nmat4566, 10.1038/NMAT4566]
[7]   Vector Magnetometer with Dual-Bridge GMR Sensors [J].
Jeng, Jen-Tzong ;
Chiang, Chia-Yi ;
Chang, Chin-Hsiung ;
Lu, Chih-Cheng .
IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (01)
[8]   High-Performance Magnetic Sensorics for Printable and Flexible Electronics [J].
Karnaushenko, Daniil ;
Makarov, Denys ;
Stoeber, Max ;
Karnaushenko, Dmitriy D. ;
Baunack, Stefan ;
Schmidt, Oliver G. .
ADVANCED MATERIALS, 2015, 27 (05) :880-885
[9]   Fabrication of Magnetic Tunnel Junctions with Amorphous CoFeSiB Ferromagnetic Electrode for Magnetic Field Sensor Devices [J].
Kato, Daiki ;
Oogane, Mikihiko ;
Fujiwara, Kosuke ;
Nishikawa, Takuo ;
Naganuma, Hiroshi ;
Ando, Yasuo .
APPLIED PHYSICS EXPRESS, 2013, 6 (10)
[10]   INTEGRATED 3-D MAGNETIC SENSOR BASED ON AN N-P-N TRANSISTOR [J].
KORDIC, S .
IEEE ELECTRON DEVICE LETTERS, 1986, 7 (03) :196-198