Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire

被引:192
作者
Thompson, Peter J. [1 ,3 ]
Macfarlan, Todd S. [2 ]
Lorincz, Matthew C. [1 ]
机构
[1] Univ British Columbia, Inst Life Sci, Dept Med Genet, Vancouver, BC V6T 1Z3, Canada
[2] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, Bethesda, MD 20892 USA
[3] Univ Calif San Francisco, Dept Med, Ctr Diabet, San Francisco, CA 94143 USA
基金
加拿大健康研究院;
关键词
EMBRYONIC STEM-CELLS; HUMAN ENDOGENOUS RETROVIRUSES; DNA METHYLATION LANDSCAPE; MOUSE ES CELLS; TRANSPOSABLE ELEMENTS; NONCODING RNA; HUMAN GENOME; GENE-EXPRESSION; PREIMPLANTATION EMBRYOS; CHIMERIC TRANSCRIPTS;
D O I
10.1016/j.molcel.2016.03.029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The life cycle of endogenous retroviruses (ERVs), also called long terminal repeat (LTR) retrotransposons, begins with transcription by RNA polymerase II followed by reverse transcription and re-integration into the host genome. While most ERVs are relics of ancient integration events, "young'' proviruses competent for retro-transposition-found in many mammals, but not humans-represent an ongoing threat to host fitness. As a consequence, several restriction pathways have evolved to suppress their activity at both transcriptional and post-transcriptional stages of the viral life cycle. Nevertheless, accumulating evidence has revealed that LTR sequences derived from distantly related ERVs have been exapted as regulatory sequences for many host genes in a wide range of cell types throughout mammalian evolution. Here, we focus on emerging themes from recent studies cataloging the diversity of ERV LTRs acting as important transcriptional regulatory elements in mammals and explore the molecular features that likely account for LTR exaptation in developmental and tissue-specific gene regulation.
引用
收藏
页码:766 / 776
页数:11
相关论文
共 111 条
[1]   Considerations when investigating IncRNA function in vivo [J].
Bassett, Andrew R. ;
Akhtar, Asifa ;
Barlow, Denise P. ;
Bird, Adrian P. ;
Brockdorff, Neil ;
Duboule, Denis ;
Ephrussi, Anne ;
Ferguson-Smith, Anne C. ;
Gingeras, Thomas R. ;
Haerty, Wilfried ;
Higgs, Douglas R. ;
Miska, Eric A. ;
Ponting, Chris P. .
ELIFE, 2014, 3 :1-14
[2]   Rate of recombinational deletion among human endogenous retroviruses [J].
Belshaw, Robert ;
Watson, Jason ;
Katzourakis, Aris ;
Howe, Alexis ;
Woolven-Allen, John ;
Burt, Austin ;
Tristem, Michael .
JOURNAL OF VIROLOGY, 2007, 81 (17) :9437-9442
[3]   Evolution of the mammalian transcription factor binding repertoire via transposable elements [J].
Bourque, Guillaume ;
Leong, Bernard ;
Vega, Vinsensius B. ;
Chen, Xi ;
Lee, Yen Ling ;
Srinivasan, Kandhadayar G. ;
Chew, Joon-Lin ;
Ruan, Yijun ;
Wei, Chia-Lin ;
Ng, Huck Hui ;
Liu, Edison T. .
GENOME RESEARCH, 2008, 18 (11) :1752-1762
[4]   GENE REGULATION FOR HIGHER CELLS - A THEORY [J].
BRITTEN, RJ ;
DAVIDSON, EH .
SCIENCE, 1969, 165 (3891) :349-+
[5]   At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription [J].
Buzdin, Anton ;
Kovalskaya-Alexandrova, Elena ;
Gogvadze, Elena ;
Sverdlov, Eugene .
JOURNAL OF VIROLOGY, 2006, 80 (21) :10752-10762
[6]  
Castro-Diaz Nathaly, 2015, Mob Genet Elements, V5, P1
[7]   Regulatory evolution of innate immunity through co-option of endogenous retroviruses [J].
Chuong, Edward B. ;
Elde, Nels C. ;
Feschotte, Cedric .
SCIENCE, 2016, 351 (6277) :1083-1087
[8]   Endogenous retroviruses function as species-specific enhancer elements in the placenta [J].
Chuong, Edward B. ;
Rumi, M. A. Karim ;
Soares, Michael J. ;
Baker, Julie C. .
NATURE GENETICS, 2013, 45 (03) :325-329
[9]   Endogenous retroviral LTRs as promoters for human genes: A critical assessment [J].
Cohen, Carla J. ;
Lock, Wynne M. ;
Mager, Dixie L. .
GENE, 2009, 448 (02) :105-114
[10]   The impact of retrotransposons on human genome evolution [J].
Cordaux, Richard ;
Batzer, Mark A. .
NATURE REVIEWS GENETICS, 2009, 10 (10) :691-703