The fragmentation pattern of central multifragmentation events observed in the collision of heavy systems can be recognized at a time when the system is still dense and the particles are still interacting with each other. This is the result obtained by applying simulated annealing algorithms to molecular dynamics simulations. We employ this algorithm to central and peripheral reactions of heavy nuclei simulated by the quantum molecular dynamics model (QMD). We see that in central collisions the fragments can already be identified when the density is still close to normal nuclear matter density and hence the fragment nucleons never pass through a density sufficiently low to allow for a liquid gas phase transition. In peripheral reactions, however, we observe that shortly after the nuclei have passed each other a division of the spectator matter into several medium-size clusters would yield the highest binding energy. However, the spectator matter does not break into these clusters but approaches thermal equilibrium.
机构:
Massachusetts Institute of Technology, Cambridge,02139-4307, United StatesMassachusetts Institute of Technology, Cambridge,02139-4307, United States
Roland, G.
1600,
Springer Science and Business Media, LLC
(34):