Isomeric Complexes of [RuII(trpy)(L)Cl] (trpy=2,2′:6′,2"-Terpyridine and HL = Quinaldic Acid): Preference of Isomeric Structural Form in Catalytic Chemoselective Epoxidation Process

被引:35
作者
Chowdhury, Abhishek Dutta [1 ]
Das, Amit [1 ]
Irshad, K. [1 ]
Mobin, Shaikh M. [1 ]
Lahiri, Goutam Kumar [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Bombay 400076, Maharashtra, India
关键词
ASYMMETRIC ALKENE EPOXIDATION; OXYGEN-TRANSFER REACTIONS; HYDROGEN-PEROXIDE; AB-INITIO; RUTHENIUM(II) COMPLEXES; EXCITATION-ENERGIES; ELECTRON-TRANSFER; REDOX PROPERTIES; OXIDATION; OLEFINS;
D O I
10.1021/ic102195w
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The present work deals with the isomeric complexes of the molecular composition [Ru-II(trpy)(L)Cl] in 1 and 2 (trpy = 2, 2':6',2 ''-terpyridine, L = deprotonated form of quinaldic acid, HL). Isomeric identities of 1 and 2 have been established by their single-crystal X-ray structures, which reveal that under the meridional configuration of trpy, O- and N donors of the unsymmetrical L are in trans, cis and cis, trans configurations, respectively, with respect to the Ru-Cl bond. Compounds 1 and 2 exhibit appreciable differences in bond distances involving Ru-Cl and Ru-O1/Ru-N1 associated with L on the basis of their isomeric structural features. In relation to isomer 2, the isomeric complex 1 exhibits a slightly lower Ru(II)-Ru(III) oxidation potential [0.35 (1), 0.38 (2) V versus SCE in CH3CN] as well as lower energy MLCT transitions [559 nm and 417 nm (1) and 533 nm and 378 nm (2)1 This has also been reflected in the DFT calculation where a lower HOMO-LUMO gap of 2.59 eV in 1 compared to 2.71 eV in 2 is found. The isomeric structural effect in 1 and 2 has also been prominent in their H-1 NMR spectral profiles. The relatively longer Ru-Cl bond in 1 (2.408(2) angstrom) as compared to 2 (2.3813(9) angstrom) due to the trans effect of the anionic O- of coordinated L makes it labile, which in turn facilitates the transformation of [Ru-II(trpy)(L)(Cl)] (1) to the solvate species, [Ru-II(trpy)(L)(CH3CN)](Cl) (1a) while crystallizing 1 from the coordinating CH3CN solvent. The formation of la has been authenticated by its single-crystal X-ray structure. However, no such exchange of "Cl-" by the solvent molecule occurs in 2 during the crystallization process from the coordinating CH3CN solvent. The labile Ru-Cl bond in 1 makes it a much superior precatalyst for the epoxidation of alkene functionalities. Compound 1 is found to function as an excellent precatalyst for the epoxidation of a wide variety of alkene functionalities under environmentally benign conditions using H2O2 as an oxidant and EtOH as a solvent, while isomer 2 remains almost ineffective under identical reaction conditions. The remarkable differences in catalytic performances of 1 and 2 based on their isomeric structural aspects have been addressed.
引用
收藏
页码:1775 / 1785
页数:11
相关论文
共 106 条
[1]   OXIDATION OF THIOANISOLES AND METHYL PHENYL SULFOXIDES BY OXO(PHOSPHINE)RUTHENIUM(IV) COMPLEXES [J].
ACQUAYE, JH ;
MULLER, JG ;
TAKEUCHI, KJ .
INORGANIC CHEMISTRY, 1993, 32 (02) :160-165
[2]  
Anastas P.T., 1998, Green chemistry: theory and practice
[3]  
[Anonymous], KIRKOTHMER ENCY CHEM
[4]  
[Anonymous], J SURG RES
[5]  
[Anonymous], 2007, GAUSSSUM 2 1
[6]  
[Anonymous], 1988, CHEM REV
[7]  
[Anonymous], ULLMANNS ENCY IND A
[8]  
Backvall J.-E., 2010, MODERN OXIDATION MET
[9]   RUTHENIUM-CATALYZED EPOXIDATIONS - MECHANISTIC AND SYNTHETIC ASPECTS [J].
BARF, GA ;
SHELDON, RA .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1995, 102 (01) :23-39
[10]   Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J].
Barone, V ;
Cossi, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (11) :1995-2001