MnO2 catalysis of oxygen reduction to accelerate the degradation of Fe-C composites for biomedical applications

被引:37
作者
Shuai, Cijun [1 ,2 ,3 ]
Li, Sheng [1 ]
Yang, Wenjing [1 ,2 ]
Yang, Youwen [2 ]
Deng, Youwen [4 ]
Gao, Chengde [1 ]
机构
[1] Cent South Univ, Coll Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha 410008, Peoples R China
[2] Jiangxi Univ Sci & Technol, Ganzhou 341000, Peoples R China
[3] Shenzhen Inst Informat Technol, Shenzhen 518172, Peoples R China
[4] Cent South Univ, Xiangya Hosp 2, Dept Emergency, Changsha 410011, Peoples R China
关键词
MnO2; catalyst; Biodegradation; Fe-C biocomposite; Cytocompatibility; Mechanical stability; BIODEGRADABLE MATERIALS; AIR ELECTRODE; CORROSION; MG; ELECTROCATALYSTS; NANOSTRUCTURES; NANOPARTICLES; ALLOY;
D O I
10.1016/j.corsci.2020.108679
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
MnO2 catalysis of oxygen reduction was proposed to accelerate the degradation of Fe-C biocomposite. As an electron mediator, MnO2 was susceptible to obtaining electrons from anodic Fe by forming MnOOH, which then transferred the electrons to oxygen by reforming MnO2. This accelerated the oxygen reduction, thereby speeding up the anodic Fe dissolution. Consequently, Fe-C-MnO2 biocomposite displayed a high corrosion rate of 0.26 mm.y(-1). Additionally, the biocomposite showed high hardness with wear resistance and stable mechanical properties during degradation. Moreover, it possessed good cytocompatibility due to acceptable ion release. These findings demonstrated the potential bone implant applications of Fe-C-MnO2 biocomposite.
引用
收藏
页数:13
相关论文
共 71 条
[1]   Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes [J].
Akinyele, I. O. ;
Shokunbi, S. .
FOOD CHEMISTRY, 2015, 173 :702-708
[2]   EIS study of oxidation heat-treatment effects on corrosion behavior of Ni10Cu11Fe6Al metallic inert anode inside molten calcium chloride salt [J].
Alzamani, Mehdi ;
Jafarzadeh, Kourosh ;
Fattah-Alhosseini, Arash .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2019, 70 (04) :605-611
[3]  
Aversa R., 2016, American Journal of Engineering and Applied Sciences, V9, P1189, DOI [10.3844/ajeassp.2016.1189.1197, DOI 10.3844/AJEASSP.2016.1189.1197]
[4]  
B.S. Institution, 2001, DENT MET MAT CORR TE
[5]   Electrochemical corrosion behavior of bronze materials in an acid-containing simulated atmospheric environment [J].
Cai, Lankun ;
Chen, Mengjie ;
Wang, Ying ;
Chen, Cheng ;
Zhang, Lehua ;
Zhou, Hao ;
Wu, Laiming ;
Yan, Ying .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2020, 71 (03) :464-473
[6]   The corrosion of pure Mg accelerated by haze pollutant ammonium sulphate [J].
Cao, Fuyong ;
Zhao, Chen ;
Song, Guang-Ling ;
Zheng, Dajiang .
CORROSION SCIENCE, 2019, 150 :161-174
[7]   The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution [J].
Cao, YL ;
Yang, HX ;
Ai, XP ;
Xiao, LF .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 557 :127-134
[8]   Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy [J].
Capek, Jaroslav ;
Kubasek, Jiri ;
Vojtech, Dalibor ;
Jablonska, Eva ;
Lipov, Jan ;
Ruml, Tomas .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 58 :900-908
[9]  
Chen J, 2019, SPRINGERBRIEF PETROL, P1, DOI 10.1007/978-3-030-21537-8
[10]  
Chen Y., 2015, ADV MATER, V26, P7018