Automated Labeling of Materials in Hyperspectral Imagery

被引:24
作者
Bue, Brian David [1 ]
Merenyi, Erzsebet [1 ]
Csatho, Beata [2 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2010年 / 48卷 / 11期
基金
美国国家航空航天局;
关键词
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS); automatic labeling; hyperspectral imagery; material labeling; spectral matching; urban; SPECTRAL LIBRARY; IDENTIFICATION; SPECTROSCOPY; SIMILARITY;
D O I
10.1109/TGRS.2010.2052815
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a technique for automatically labeling segmented hyperspectral imagery with semantically meaningful material labels. The technique compares the mean signatures of each image segment to a spectral library of known materials, and material labels are assigned to image segments according to the most similar library entry. The similarity between spectral signatures is evaluated using our recently proposed CICRd similarity measure designed specifically for hyperspectral imagery. This measure considers both the continuum-intact reflectance spectrum and its continuum-removed representation. We provide a thorough assessment of this measure by comparison to several commonly used similarity measures on a well-studied lowaltitude Airborne Visible/Infrared Imaging Spectrometer image of an urban area. We evaluate our results using both information-theoretic techniques and visual validation of the resulting spectral matches.
引用
收藏
页码:4059 / 4070
页数:12
相关论文
共 42 条
  • [1] The critical evaluation of a comprehensive mass spectral library
    Ausloos, P
    Clifton, CL
    Lias, SG
    Mikaya, AI
    Stein, SE
    Tchekhovskoi, DV
    Sparkman, OD
    Zaikin, V
    Zhu, D
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1999, 10 (04) : 287 - 299
  • [2] The ASTER spectral library version 2.0
    Baldridge, A. M.
    Hook, S. J.
    Grove, C. I.
    Rivera, G.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) : 711 - 715
  • [3] Bornhold B. D., 2008, P IEEE AER C MAR, P1
  • [4] BUE B, 2009, P IEEE WHISPERS AUG, P1
  • [5] Semi-supervised graph-based hyperspectral image classification
    Camps-Valls, Gustavo
    Bandos, Tatyana V.
    Zhou, Dengyong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3044 - 3054
  • [6] An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis
    Chang, CI
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) : 1927 - 1932
  • [7] CLARK R, 2006, US GEOLOGICAL SURVEY
  • [8] Clark R. N., 1987, P 3 AIS WORKSHOP, P138
  • [9] REFLECTANCE SPECTROSCOPY - QUANTITATIVE-ANALYSIS TECHNIQUES FOR REMOTE-SENSING APPLICATIONS
    CLARK, RN
    ROUSH, TL
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB7): : 6329 - 6340
  • [10] Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems
    Clark, RN
    Swayze, GA
    Livo, KE
    Kokaly, RF
    Sutley, SJ
    Dalton, JB
    McDougal, RR
    Gent, CA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)