Dirichlet series and hyperelliptic curves

被引:4
作者
Lee, Jung-Jo [1 ]
Murty, M. Ram [1 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1515/FORUM.2007.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a fixed hyperelliptic curve C given by the equation y(2) = f(x) with f is an element of Z[x] having distinct roots and degree at least 5, we study the variation of rational points on the quadratic twists C-m whose equation is given by my(2) = f(x). More precisely, we study the Dirichlet series D-f(s) = Sigma(m not equal 0)' #C-m(Q)vertical bar m vertical bar(-s) where the summation is over all non-zero squarefree integers. We show that D-f(s) converges for R(s) > 1. We extend its range of convergence assuming the ABC conjecture. This leads us to study related Dirichlet series attached to binary forms. We are then led to investigate the variation of rational points on twists of superelliptic curves. We apply this study to certain classical problems of analytic number theory such as the number of powerfree values of a fixed polynomial in Z[x].
引用
收藏
页码:677 / 705
页数:29
相关论文
共 22 条
[1]  
[Anonymous], INT MATH RES NOTICES
[2]  
Belyi G. V., 1979, IZV AN SSSR M, V43, p[267, 479]
[3]   Uniformity of rational points [J].
Caporaso, L ;
Harris, J ;
Mazur, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (01) :1-35
[4]   The number of fields generated by the square root of values of a given polynomial [J].
Cutter, P ;
Granville, A ;
Tucker, TJ .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01) :71-79
[5]  
Davenport H., 1980, MULTIPLICATIVE NUMBE, V74
[6]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[7]  
Granville A, 1998, INT MATH RES NOTICES, V1998, P991
[8]  
HONDA T, 1960, JAPAN J MATH, V30, P84
[9]  
Hooley C., 1976, CAMBRIDGE TRACTS MAT
[10]   An application of Mumford's gap principle [J].
Lee, JJ ;
Murty, MR .
JOURNAL OF NUMBER THEORY, 2004, 105 (02) :333-343