Supporting nickel on vanadium nitride for comparable hydrogen evolution performance to platinum in alkaline solution

被引:25
作者
Shen, Hangjia [1 ]
Liang, Shuqin [1 ]
Adimi, Samira [1 ]
Guo, Xuyun [2 ]
Zhu, Ye [2 ]
Guo, Haichuan [1 ]
Thomas, Tiju [3 ]
Attfield, J. Paul [4 ,5 ]
Yang, Minghui [1 ]
机构
[1] Chinese Acad Sci, Solid State Funct Mat Res Lab, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Phys, Hung Hom, Hong Kong, Peoples R China
[3] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
[4] Univ Edinburgh, Ctr Sci Extreme Condit, Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Univ Edinburgh, Sch Chem, Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 中国博士后科学基金;
关键词
WATER; CATALYSTS; INTERFACE; CLUSTERS;
D O I
10.1039/d1ta02760c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogen evolution reaction (HER) is an effective means to producing hydrogen from electrolytic water splitting. However the best-performing catalysts use expensive Pt-group metals. Cheaper non-precious metal alternatives have shown low activity as their mechanism of H-2 formation (Volmer-Heyrovsky) leads to high overpotentials. Here, we report an outstanding HER catalyst (Ni/VN) highly dispersed nickel supported on vanadium nitride that matches the turnover frequency of the platinum on carbon (Pt/C) benchmark material. It is more durable than Pt/C in alkaline solution. Ni/VN follows the low-overpotential (Volmer-Tafel) mechanism of H-2 formation, with a 43 mV overpotential at a current density of 10 mA cm(-2). This value is even below that of Pt/C (57 mV). The support of VN enhances the dispersion of nickel, weakens the surface oxidation, decreases the hydrogen binding energy, and therefore significantly improves the HER catalysis. This result removes one of the major barriers for scalability of electrolytic water-splitting by demonstrating that nitride-based materials can match and even surpass the efficiency and durability of precious metal catalysts.
引用
收藏
页码:19669 / 19674
页数:6
相关论文
共 39 条
[21]   Efficient Hydrogen Oxidation Catalyzed by Strain-Engineered Nickel Nanoparticles [J].
Ni, Weiyan ;
Wang, Teng ;
Schouwink, Pascal Alexander ;
Chuang, Yu-Chun ;
Chen, Hao Ming ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :10797-10801
[22]   Performance of water gas shift reaction catalysts: A review [J].
Pal, D. B. ;
Chand, R. ;
Upadhyay, S. N. ;
Mishra, P. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 93 :549-565
[23]   RuP2-Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values [J].
Pu, Zonghua ;
Amiinu, Ibrahim Saana ;
Kou, Zongkui ;
Li, Wenqiang ;
Mu, Shichun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (38) :11559-11564
[24]  
Shanghai Metals Market, SHANGHAI METALS MARK
[25]   Nickel-Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction [J].
Shen, Yi ;
Zhou, Yongfang ;
Wang, Duo ;
Wu, Xi ;
Li, Jia ;
Xi, Jingyu .
ADVANCED ENERGY MATERIALS, 2018, 8 (02)
[26]   Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions [J].
Song, Fuzhan ;
Li, Wei ;
Yang, Jiaqi ;
Han, Guanqun ;
Liao, Peilin ;
Sun, Yujie .
NATURE COMMUNICATIONS, 2018, 9
[27]   Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide [J].
Suryanto, Bryan H. R. ;
Wang, Yun ;
Hocking, Rosalie K. ;
Adamson, William ;
Zhao, Chuan .
NATURE COMMUNICATIONS, 2019, 10 (1)
[28]   Origin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfaces [J].
Tao, J. G. ;
Pan, J. S. ;
Huan, C. H. A. ;
Zhang, Z. ;
Chai, J. W. ;
Wang, S. J. .
SURFACE SCIENCE, 2008, 602 (16) :2769-2773
[29]   Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics [J].
Wang, Dewen ;
Li, Qun ;
Han, Ce ;
Lu, Qingqing ;
Xing, Zhicai ;
Yang, Xiurong .
NATURE COMMUNICATIONS, 2019, 10 (1)
[30]  
Wang TT, 2019, ENERG ENVIRON SCI, V12, P3522, DOI 10.1039/c9ee01743g