Ensemble biclustering gene expression data based on the spectral clustering

被引:5
|
作者
Yin, Lu [1 ,2 ,3 ]
Liu, Yongguo [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
[3] Huaiyin Inst Technol, Sch Comp & Software, Huaian 223003, Jiangsu, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2018年 / 30卷 / 08期
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Ensemble; Biclustering; Spectral clustering; Gene expression data;
D O I
10.1007/s00521-016-2819-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many biclustering algorithms and bicluster criteria have been proposed in analyzing the gene expression data. However, there are no clues about the choice of a specific biclustering algorithm, which make ensemble biclustering method receive much attention for aggregating the advantage of various biclustering algorithms. Although the method of co-association consensus (COAC) is a landmark of ensemble biclustering, the effectiveness and efficiency are the worst in state-of-the-art methods. In this paper, to improve COAC, we propose spectral ensemble biclustering (SEB) in which an novel method for generating a set of basic biclusters is proposed for generating the basic biclusters with better quality as well as higher diversity and an new consensus method is also adopted for combing the above basic biclusters. In SEB, spectral clustering is directly applied to the co-association matrix and equivalently transformed into the weighted k-means. Experiments on six gene expression data demonstrate that the effectiveness, efficiency and scalability of SEB are the best compared with existing ensemble methods in terms of the biological significance and runtime.
引用
收藏
页码:2403 / 2416
页数:14
相关论文
共 50 条
  • [31] MSR-based algorithms for biclustering of microarray gene expression data
    Balamurugan, R.
    Raja, S. P.
    CURRENT SCIENCE, 2022, 123 (04): : 530 - 541
  • [32] Pattern-Based Biclustering with Constraints for Gene Expression Data Analysis
    Henriques, Rui
    Madeira, Sara C.
    PROGRESS IN ARTIFICIAL INTELLIGENCE-BK, 2015, 9273 : 326 - 339
  • [33] Biclustering of gene expression data by simulated annealing
    Chakraborty, Anupam
    EIGHTH INTERNATIONAL CONFERENCE ON HIGH-PERFORMANCE COMPUTING IN ASIA-PACIFIC REGION, PROCEEDINGS, 2005, : 627 - 632
  • [34] Biclustering of Gene Expression Data Based on SimUI Semantic Similarity Measure
    Nepomuceno, Juan A.
    Troncoso, Alicia
    Nepomuceno-Chamorro, Isabel A.
    Aguilar-Ruiz, Jesus S.
    Hybrid Artificial Intelligent Systems, 2016, 9648 : 685 - 693
  • [35] A Penalized Regression-Based Biclustering Approach in Gene Expression Data
    Wei, Mengxi
    Zheng, Zhi
    Zhang, Weiping
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [36] Biclustering of Gene Expression Data by Correlation-Based Scatter Search
    Nepomuceno, Juan A.
    Troncoso, Alicia
    Aguilar-Ruiz, Jesus S.
    BIODATA MINING, 2011, 4
  • [37] Row and Column Structure-Based Biclustering for Gene Expression Data
    Qian, Subin
    Liu, Huiyi
    Yuan, Xiaofeng
    Wei, Wei
    Chen, Shuangshuang
    Yan, Hong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 1117 - 1129
  • [38] On Evolutionary Algorithms for Biclustering of Gene Expression Data
    Carballido Jessica, A.
    Gallo Cristian, A.
    Dussaut Julieta, S.
    Ignacio, Ponzoni
    CURRENT BIOINFORMATICS, 2015, 10 (03) : 259 - 267
  • [39] Evolutionary fuzzy biclustering of gene expression data
    Mitra, Sushmita
    Banka, Haider
    Paik, Jiaul Hoque
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2007, 4481 : 284 - +
  • [40] Configurable pattern-based evolutionary biclustering of gene expression data
    Pontes, Beatriz
    Giraldez, Raul
    Aguilar-Ruiz, Jesus S.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2013, 8