Existence of limiting distribution for affine processes

被引:18
|
作者
Jin, Peng [1 ]
Kremer, Jonas [2 ]
Ruediger, Barbara [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] Berg Univ Wuppertal, Fak Math & Nat Wissensch, D-42119 Wuppertal, Germany
关键词
Affine process; Limiting distribution; Stationary distribution; Generalized Riccati equation; STATE BRANCHING-PROCESSES; STOCHASTIC VOLATILITY; MOMENT EXPLOSIONS; TERM STRUCTURE;
D O I
10.1016/j.jmaa.2020.123912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, sufficient conditions are given for the existence of limiting distribution of a conservative affine process on the canonical state space R (m)(>= 0) x R-n, where m, n is an element of Z(>= 0) with m + n > 0. Our main theorem extends and unifies some known results for OU-type processes on R-n and one-dimensional CBI processes (with state space R (>= 0)). To prove our result, we combine analytical and probabilistic techniques; in particular, the stability theory for ODEs plays an important role. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] EXPONENTIAL MOMENTS OF AFFINE PROCESSES
    Keller-Ressel, Martin
    Mayerhofer, Eberhard
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (02) : 714 - 752
  • [2] On parameter estimation for critical affine processes
    Barczy, Matyas
    Doering, Leif
    Li, Zenghu
    Pap, Gyula
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 647 - 696
  • [3] Noncausal affine processes with applications to derivative pricing
    Gourieroux, Christian
    Lu, Yang
    MATHEMATICAL FINANCE, 2023, 33 (03) : 766 - 796
  • [4] Exponentially affine martingales, affine measure changes and exponential moments of affine processes
    Kallsen, Jan
    Muhle-Karbe, Johannes
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (02) : 163 - 181
  • [5] ERGODICITY OF AFFINE PROCESSES ON THE CONE OF SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    Friesen, Martin
    Jin, Peng
    Kremer, Jonas
    Ruediger, Barbara
    ADVANCES IN APPLIED PROBABILITY, 2020, 52 (03) : 825 - 854
  • [6] Geometric ergodicity of affine processes on cones
    Mayerhofer, Eberhard
    Stelzer, Robert
    Vestweber, Johanna
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 4141 - 4173
  • [7] AFFINE PROCESSES BEYOND STOCHASTIC CONTINUITY
    Keller-Ressel, Martin
    Schmidt, Thorsten
    Wardenga, Robert
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (06) : 3387 - 3437
  • [8] Limiting distribution for subcritical controlled branching processes with random control function
    González, M
    Molina, M
    del Puerto, I
    STATISTICS & PROBABILITY LETTERS, 2004, 67 (03) : 277 - 284
  • [9] A new criterion on existence and uniqueness of stationary distribution for diffusion processes
    Zhenzhong Zhang
    Dayue Chen
    Advances in Difference Equations, 2013
  • [10] A new criterion on existence and uniqueness of stationary distribution for diffusion processes
    Zhang, Zhenzhong
    Chen, Dayue
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,