Tuning of reachable set in one dimensional fuzzy differential inclusions

被引:79
作者
Abbasbandy, S
Nieto, JJ
Alavi, M
机构
[1] Iman Khomeini Int Univ, Dept Math, Qazvin, Iran
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
[3] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
关键词
D O I
10.1016/j.chaos.2005.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a new numerical method for solving one dimensional fuzzy differential inclusions. An efficient algorithm to solve them in MAPLE has been devised, which is easy to implement. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1337 / 1341
页数:5
相关论文
共 32 条
[1]   Numerical methods for fuzzy differential inclusions [J].
Abbasbandy, S ;
Viranloo, TA ;
López-Pouso, O ;
Nieto, JJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (10-11) :1633-1641
[2]  
Abbasbandy S., 2004, Nonlinear Stud., V11, P117
[3]   Viability theory and fuzzy differential equations [J].
Agarwal, RP ;
O'Regan, D ;
Lakshmikantham, V .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :563-580
[4]   Radiotherapy problem under fuzzy theoretic approach [J].
Ammar, EE ;
Hussein, ML .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :739-744
[5]  
[Anonymous], 2005, CHAOS SOLITONS FRACT
[6]  
AUBIN JP, 1990, PROBL CONTROL INFORM, V19, P55
[7]   Numerically solution of fuzzy differential equations by Adomian method [J].
Babolian, E ;
Sadeghi, H ;
Javadi, S .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (02) :547-557
[8]  
BAIDOSOV VA, 1989, DOKL AKAD NAUK SSSR+, V309, P781
[9]  
BAIDOSOV VA, 1990, PMM-J APPL MATH MEC+, V54, P8
[10]   A POSSIBILISTIC ARGUMENT FOR IRREVERSIBILITY [J].
BOBYLEV, VN .
FUZZY SETS AND SYSTEMS, 1990, 34 (01) :73-80