Fibro-CoSANet: pulmonary fibrosis prognosis prediction using a convolutional self attention network

被引:13
作者
Al Nazi, Zabir [1 ]
Mashrur, Fazla Rabbi [2 ]
Islam, Md Amirul [3 ,4 ]
Saha, Shumit [5 ,6 ]
机构
[1] Brainekt AI Lab Dhaka, Dhaka, Bangladesh
[2] Khulna Univ Engn & Technol, Dept Biomed Engn, Khulna, Bangladesh
[3] Ryerson Univ, Dept CS, Toronto, ON, Canada
[4] Vector Inst AI, Toronto, ON, Canada
[5] Univ Toronto, Dalla Lana Sch Publ Hlth, Inst Hlth Policy Management & Evaluat, Toronto, ON, Canada
[6] Univ Hlth Network, Ctr Global eHlth Innovat, Techna Inst, Toronto, ON, Canada
关键词
pulmonary fibrosis; computed tomography (CT); convolutional neural network; self-attention; computer-aided diagnosis; CT;
D O I
10.1088/1361-6560/ac36a2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Idiopathic pulmonary fibrosis (IPF) is a restrictive interstitial lung disease that causes lung function decline by lung tissue scarring. Although lung function decline is assessed by the forced vital capacity (FVC), determining the accurate progression of IPF remains a challenge. To address this challenge, we proposed Fibro-CoSANet, a novel end-to-end multi-modal learning based approach, to predict the FVC decline. Fibro-CoSANet utilized computed tomography images and demographic information in convolutional neural network frameworks with a stacked attention layer. Extensive experiments on the OSIC Pulmonary Fibrosis Progression Dataset demonstrated the superiority of our proposed Fibro-CoSANet by achieving new state-of-the-art modified Laplace log-likelihood score of -6.68. This network may benefit research areas concerned with designing networks to improve the prognostic accuracy of IPF. The source-code for Fibro-CoSANet is available at: https://github.com/zabir-nabil/Fibro-CoSANet.
引用
收藏
页数:13
相关论文
共 25 条
  • [1] Beucher S., 1979, P INT WORKSH IM PROC
  • [2] Idiopathic pulmonary fibrosis - Prognostic value of changes in physiology and six-minute-walk test
    Flaherty, Kevin R.
    Andrei, Adin-Cristian
    Murray, Susan
    Fraley, Chris
    Colby, Thomas V.
    Travis, William D.
    Lama, Vibha
    Kazerooni, Ella A.
    Gross, Barry H.
    Toews, Galen B.
    Martinez, Fernando J.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2006, 174 (07) : 803 - 809
  • [3] Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis
    Garcia-Sancho, Cecilia
    Buendia-Roldan, Ivette
    Rosario Fernandez-Plata, Ma
    Navarro, Carmen
    Perez-Padilla, Rogelio
    Vargas, Mario H.
    Loyd, James E.
    Selman, Moises
    [J]. RESPIRATORY MEDICINE, 2011, 105 (12) : 1902 - 1907
  • [4] SINGULAR VALUE DECOMPOSITION AND LEAST SQUARES SOLUTIONS
    GOLUB, GH
    REINSCH, C
    [J]. NUMERISCHE MATHEMATIK, 1970, 14 (05) : 403 - &
  • [5] CT in Idiopathic Pulmonary Fibrosis: Diagnosis and Beyond
    Gruden, James F.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 206 (03) : 495 - 507
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] Kaggle, OSIC PULMONARY FIBRO
  • [8] A Multidimensional Index and Staging System for Idiopathic Pulmonary Fibrosis
    Ley, Brett
    Ryerson, Christopher J.
    Vittinghoff, Eric
    Ryu, Jay H.
    Tomassetti, Sara
    Lee, Joyce S.
    Poletti, Venerino
    Buccioli, Matteo
    Elicker, Brett M.
    Jones, Kirk D.
    King, Talmadge E., Jr.
    Collard, Harold R.
    [J]. ANNALS OF INTERNAL MEDICINE, 2012, 156 (10) : 684 - U58
  • [9] Mandal Sampurna, 2020, 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), P861, DOI 10.1109/GUCON48875.2020.9231239
  • [10] Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation
    Park, S.
    Chu, L. C.
    Fishman, E. K.
    Yuille, A. L.
    Vogelstein, B.
    Kinzler, K. W.
    Horton, K. M.
    Hruban, R. H.
    Zinreich, E. S.
    Fouladi, D. Fadaei
    Shayesteh, S.
    Graves, J.
    Kawamoto, S.
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (01) : 35 - 44