Partially coherent vortex beams of arbitrary radial order and a van Cittert-Zernike theorem for vortices

被引:23
|
作者
Zhang, Yongtao [1 ,2 ]
Cai, Yangjian [3 ,4 ,5 ]
Gbur, Greg [2 ]
机构
[1] Minnan Normal Univ, Coll Phys & Informat Engn, Zhangzhou 363000, Peoples R China
[2] Univ N Carolina, Dept Phys & Opt Sci, Charlotte, NC 28277 USA
[3] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Engn & Tech Ctr Light Manipulat, Jinan 250014, Peoples R China
[4] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Opt & Photon Device, Jinan 250014, Peoples R China
[5] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; CORRELATION SINGULARITY; ATMOSPHERIC-TURBULENCE; LIGHT; REPRESENTATION;
D O I
10.1103/PhysRevA.101.043812
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically define a complete class of partially coherent vortex beams of any radial and azimuthal order and characterize the behavior of their phase singularities and orbital angular momentum. These beams are shown to exhibit a coherence vortex supplement to the van Cittert-Zernike theorem, in which the vortex structure of the random beam reconstitutes upon propagation. This full characterization of a class of partially coherent Laguerre-Gauss beams of any order may find application in free-space optical communication, among other uses.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PARTIALLY COHERENT SOURCES WITH PHASE PROFILE AND THE VAN CITTERT-ZERNIKE THEOREM
    BALTES, HP
    FERWERDA, HA
    LETTERE AL NUOVO CIMENTO, 1980, 27 (16): : 541 - 543
  • [2] Use of the van Cittert-Zernike theorem for partially polarized sources
    Gori, F
    Santarsiero, M
    Borghi, R
    Piquero, G
    OPTICS LETTERS, 2000, 25 (17) : 1291 - 1293
  • [3] Multiphoton quantum van Cittert-Zernike theorem
    Chenglong You
    Ashe Miller
    Roberto de J. León-Montiel
    Omar S. Magaña-Loaiza
    npj Quantum Information, 9
  • [4] The van Cittert-Zernike theorem for electromagnetic fields
    Ostrovsky, Andrey S.
    Martinez-Niconoff, Gabriel
    Martinez-Vara, Patricia
    Olvera-Santamaria, Miguel A.
    OPTICS EXPRESS, 2009, 17 (03): : 1746 - 1752
  • [5] Van Cittert-Zernike theorem with Stokes parameters
    Tervo, Jani
    Setala, Tero
    Turunen, Jari
    Friberg, Ari T.
    OPTICS LETTERS, 2013, 38 (13) : 2301 - 2303
  • [6] The measurement of radiance and the van Cittert-Zernike Theorem
    Winston, R
    Sun, YP
    Littlejohn, RG
    OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 41 - 48
  • [7] The van Cittert-Zernike theorem: a fractional order Fourier transform point of view
    Torres, CO
    Torres, Y
    OPTICS COMMUNICATIONS, 2004, 232 (1-6) : 11 - 14
  • [8] Applicability of the Van Cittert-Zernike theorem in a Ronchi shearing interferometer
    Liu, Yang
    Tang, Feng
    Wang, Xiangzhao
    Peng, Changzhe
    Li, Peng
    APPLIED OPTICS, 2022, 61 (06) : 1464 - 1474
  • [9] Some consequences of the van Cittert-Zernike theorem for partially polarized stochastic electromagnetic fields
    Shirai, Tomohiro
    OPTICS LETTERS, 2009, 34 (23) : 3761 - 3763
  • [10] On the van Cittert-Zernike theorem for intensity correlations and its applications
    Gureyev, Timur E.
    Kozlov, Alexander
    Paganin, David M.
    Nesterets, Yakov I.
    De Hoog, Frank
    Quiney, Harry M.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (09) : 1577 - 1584