In-gel study of the effect of magnetic nanoparticles immobilization on their heating efficiency for application in Magnetic Fluid Hyperthermia

被引:32
作者
Avolio, Matteo [1 ,2 ]
Guerrini, Andrea [3 ,4 ]
Brero, Francesca [1 ,2 ]
Innocenti, Claudia [3 ,4 ]
Sangregorio, Claudio [3 ,4 ,5 ]
Cobianchi, Marco [1 ,2 ]
Mariani, Manuel [1 ,2 ]
Orsini, Francesco [6 ,7 ]
Arosio, Paolo [6 ,7 ]
Lascialfari, Alessandro [6 ,7 ]
机构
[1] Univ Pavia, INFN, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
[2] Univ Pavia, INSTM, Via Bassi 6, I-27100 Pavia, Italy
[3] Univ Firenze, Dipartimento Chim, Via Lastruccia 6, Sesto Fiorentino, FI, Italy
[4] Univ Firenze, INSTM, Via Lastruccia 6, Sesto Fiorentino, FI, Italy
[5] ICCOM CNR, Via Lastruccia 6, Sesto Fiorentino, FI, Italy
[6] Univ Milan, INFN, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[7] Univ Milan, INSTM, Via Celoria 16, I-20133 Milan, Italy
关键词
Magnetic Fluid Hyperthermia; Magnetic nanoparticles; Superparamagnetism; Specific Absorption Rate; Relaxation times; Brownian motion; PARTICLE HYPERTHERMIA; FIELD; RELAXATION; POWER; SIZE;
D O I
10.1016/j.jmmm.2018.09.111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent studies on magnetic nanoparticles (MNPs) used for Magnetic Fluid Hyperthermia treatments have shown that Brownian rotation is suppressed when they are confined within a cell. To investigate this effect we conducted a systematic study of the Specific Absorption Rate (SAR) of colloidal suspensions of MNPs in water and gels at different agarose concentration. SAR measurements were conducted by varying the frequency (f = 110-990 kHz) and amplitude (up to 17 kA/m) of the applied alternating magnetic field (AMF). MNP samples with different diameter (d = 10, 14, and 18 nm) were used. Our results show that Neel relaxation dominates SAR with negligible contribution from Brownian motion for smaller MNPs (d = 10 nm). For the largest MNPs (d = 18 nm) we observed a more significant SAR decrease in gel suspensions as compared to those in solution. In particular, when applying AMFs as the ones used in a clinical setting (16.2 kA/m at f = 110 kHz), we measured SAR value of 67 W/g in solution and 25 W/g in gel. This experimental finding demonstrates that investigation of MNPs properties should be conducted in media with viscosity similar to the one found in mammalian tissues.
引用
收藏
页码:504 / 512
页数:9
相关论文
共 55 条
[1]   INFLUENCE OF NONSTOICHIOMETRY ON THE VERWEY TRANSITION [J].
ARAGON, R ;
BUTTREY, DJ ;
SHEPHERD, JP ;
HONIG, JM .
PHYSICAL REVIEW B, 1985, 31 (01) :430-436
[2]   High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions [J].
Blanco-Andujar, C. ;
Ortega, D. ;
Southern, P. ;
Pankhurst, Q. A. ;
Thanh, N. T. K. .
NANOSCALE, 2015, 7 (05) :1768-1775
[3]  
BOX GEP, 1959, BIOMETRIKA, V46, P77, DOI 10.1093/biomet/46.1-2.77
[4]   Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia [J].
Branquinho, Luis C. ;
Carriao, Marcus S. ;
Costa, Anderson S. ;
Zufelato, Nicholas ;
Sousa, Marcelo H. ;
Miotto, Ronei ;
Ivkov, Robert ;
Bakuzis, Andris F. .
SCIENTIFIC REPORTS, 2013, 3
[5]  
Brezovich I.A., 1988, Medical physics monograph, V16, P82
[6]  
Burrows F, 2012, MODEL MAGNETIC HYPER
[7]   Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization [J].
Carrey, J. ;
Mehdaoui, B. ;
Respaud, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[8]   Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles [J].
Cervadoro, Antonio ;
Giverso, Chiara ;
Pande, Rohit ;
Sarangi, Subhasis ;
Preziosi, Luigi ;
Wosik, Jarek ;
Brazdeikis, Audrius ;
Decuzzi, Paolo .
PLOS ONE, 2013, 8 (02)
[9]   Experimental determination of the frequency and field dependence of Specific Loss Power in Magnetic Fluid Hyperthermia [J].
Cobianchi, M. ;
Guerrini, A. ;
Avolio, M. ;
Innocenti, C. ;
Corti, M. ;
Arosio, P. ;
Orsini, F. ;
Sangregorio, C. ;
Lascialfari, A. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 444 :154-160
[10]  
Coelho A.A., 2005, Topas: General Profile and Structure Analysis Software for Powder Diffraction Data