Motion analysis of a spherical solid particle in plane Couette Newtonian fluid flow

被引:59
|
作者
Dogonchi, A. S. [1 ]
Hatami, M. [2 ]
Domairry, G. [3 ]
机构
[1] Mazandaran Inst Technol, Dept Mech Engn, Babol Sar, Iran
[2] Esfarayen Univ Technol, Dept Mech Engn, Esfarayen, North Khorasan, Iran
[3] Babol Noshirvani Univ Technol, Dept Mech Engn, Babal, Iran
关键词
Solid spherical particle; Plane Couette fluid flow; Newtonian fluid; Velocity alterations; Differential Transformation Method (DIM); SYSTEMS;
D O I
10.1016/j.powtec.2015.01.018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this article, the motion of a spherical particle in a plane Couette Newtonian fluid flow is studied. The governing equations of a spherical solid particle's motion in the plane Couette fluid flow are investigated using the Differential Transformation Method (DTM) and a Fade approximant which are an analytical solution technique. For validation of the analytical solution, the governing equation is solved numerically. The horizontal and vertical velocities of spherical solid particle are shown for different fluids and values of the embedding parameters. The DTM-Pade results indicate that the horizontal and vertical velocities of spherical solid particle in water fluid are higher than the glycerin and ethylene-glycol fluids. Also the horizontal and vertical velocities increase with an increase in the particle radius. Comparison of the results (DIM and numerical) was shown that the analytical method and numerical data are in a good agreement with each other. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [1] Homotopy perturbation method for motion of a spherical solid particle in plane couette fluid flow
    Jalaal, M.
    Nejad, M. G.
    Jalili, P.
    Esmaeilpour, M.
    Bararnia, H.
    Ghasemi, E.
    Soleimani, Soheil
    Ganji, D. D.
    Moghimi, S. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2267 - 2270
  • [2] Efficient Analytical Approaches for Motion of a Spherical Solid Particle in Plane Couette Fluid Flow using Nonlinear Methods
    Ghasemi, S. E.
    Palandi, S. Jalili
    Hatami, M.
    Ganji, D. D.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2012, 5 (02): : 97 - 104
  • [3] Accurate solution for motion of a spherical solid particle in plane Couette Newtonian fluid mechanical flow using HPM-Pade approximant and the Boubaker polynomials expansion scheme BPES
    Torabi, Mohsen
    Yaghoobi, Hessameddin
    Boubaker, Karem
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 58 (1-2) : 224 - 228
  • [4] A novel and developed approximation for motion of a spherical solid particle in plane coquette fluid flow
    Hamidi, S. M.
    Rostamiyan, Y.
    Ganji, D. D.
    Fereidoon, A.
    ADVANCED POWDER TECHNOLOGY, 2013, 24 (03) : 714 - 720
  • [5] A new Analytical Solution Procedure for the Motion of a Spherical Particle in a Plane Couette Flow
    Khan, Majid
    Soleymani, Fazlollah
    Gondal, Muhammad Asif
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (05): : 319 - 326
  • [6] High accuracy analysis for motion of a spherical particle in plane Couette fluid flow by Multi-step Differential Transformation Method
    Hatami, M.
    Sheikholeslami, M.
    Domairry, G.
    POWDER TECHNOLOGY, 2014, 260 : 59 - 67
  • [7] An analytical study of unsteady motion of non-spherical particle in plane of Couette flow
    Malvandi, A.
    Moshizi, S. A.
    Hedayati, F.
    Domairry, G.
    JOURNAL OF MOLECULAR LIQUIDS, 2014, 199 : 408 - 414
  • [8] GENERALIZED PLANE COUETTE FLOW OF A NON-NEWTONIAN FLUID
    FLUMERFELT, RW
    PIERICK, MW
    COOPER, SL
    BIRD, RB
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1969, 8 (02): : 354 - +
  • [9] TRANSIENT MOTION OF A SPHERICAL-PARTICLE IN A NEWTONIAN FLUID
    KULSHRESHTHA, AK
    CARUTHERS, JM
    JOURNAL OF RHEOLOGY, 1982, 26 (06) : 613 - 613
  • [10] CRITICAL REYNOLDS NUMBER FOR A SPHERICAL PARTICLE IN PLANE COUETTE FLOW
    VANDERWERFF, TJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1970, 21 (05): : 825 - +