Cofiniteness of extension functors of cofinite modules

被引:15
作者
Abazari, Rasoul [1 ]
Bahmanpour, Kamal [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Ardabil Branch, Ardebil, Iran
关键词
Arithmetic rank; Associated primes; Cofinite modules; Krull dimension; Local cohomology; Minimax modules; Weakly cofinite modules; Weakly Laskerian modules; LOCAL COHOMOLOGY MODULES; SMALL DIMENSION; PRIMES; IDEALS; RINGS;
D O I
10.1016/j.jalgebra.2010.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring, I an ideal of R and let M and N be non-zero R-modules. It is shown that the R-modules Ext(R)(I)(N, M) are /-cofinite, for all i >= 0, whenever M is 1-cofinite and N is finitely generated of dimension d <= 2. Also, we prove that the R-modules Ext(I)R(N, M) are I-cofinite, for all i >= 0, whenever N is finitely generated and M is /-cofinite of dimension d <= 1. This immediately implies that if I has dimension one (i.e., dim R/I= 1) then Ext(R)(I)(N, H-I(1)(M)) is I-cofinite for all i >= 0, and all finitely generated R-modules M and N. Also, we prove that if R is local then the R-modules Ext(i)(R)(N, M) are I-weakly cofinite, for all i >= 0, whenever M is I-cofinite and N is finitely generated of dimension d <= 3. Finally, it is shown that the R-modules Ext(R)(i) (N, M) are I-weakly cofinite, for all i >= 0, whenever R is local. N is finitely generated and M is 1-cofinite of dimension d <= 2. Published by Elsevier Inc.
引用
收藏
页码:507 / 516
页数:10
相关论文
共 23 条
[1]   Cofiniteness of local cohomology modules for ideals of small dimension [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1997-2021
[2]  
Brodmann M. P., 1998, LOCAL COHOMOLOGY ALG
[3]   Cofiniteness of local cohomology modules over regular local rings [J].
Chiriacescu, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :1-7
[4]   ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES [J].
DELFINO, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 :79-84
[5]   Cofinite modules and local cohomology [J].
Delfino, D ;
Marley, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :45-52
[6]   Associated primes of local cohomology modules of weakly Laskerian modules [J].
Divaani-Aazar, K ;
Mafi, A .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) :681-690
[7]   Associated primes of local cohomology modules [J].
Divaani-Aazar, K ;
Mafi, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :655-660
[8]   FLAT COVERS AND FLAT COTORSION MODULES [J].
ENOCHS, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (02) :179-184
[9]  
Grothendieck A., 1966, LECT NOTES MATH, V862
[10]  
Grothendieck A., 1968, COHOMOLOGIE LOCAL FA