Efficient laser pulse dispersion codes for turbid undersea imaging and communications applications

被引:7
作者
Dalgleish, Fraser R. [1 ]
Caimi, Frank M. [1 ]
Vuorenkoski, Anni K. [1 ]
Britton, Walter B. [1 ]
Ramos, Brian [1 ]
Giddings, Thomas E. [2 ]
Shirron, Joseph J. [2 ]
Mazel, Charles H. [3 ]
机构
[1] Florida Atlantic Univ, Harbor Branch, Ft Pierce, FL 34946 USA
[2] Metron Inc, Reston, VA USA
[3] Phys Sci Inc, Andover, NH 01810 USA
来源
OCEAN SENSING AND MONITORING II | 2010年 / 7678卷
关键词
laser communications; channel characterization; radiative transfer; Monte Carlo;
D O I
10.1117/12.854775
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The objective of this work was to develop and validate approaches to accurately and efficiently model channel characteristics in a range of environmental and operational conditions for underwater laser communications systems that use high frequency amplitude modulation (AM) or coded pulse trains. Two approaches were investigated: 1) a Monte Carlo model to calculate impulse responses for a particular system hardware design over a large range of environmental and operational conditions, and 2) a semi-analytic model which has the potential to be more computationally efficient than the Monte Carlo model. The formulation of the Monte Carlo code is presented in this paper, together with test results used to evaluate the range of accuracy of the model against 500ps laser-pulse propagation measurements from well-controlled and characterized particle suspensions in a 12.5m test tank. A multiple scattering study using the Monte Carlo simulation code was also performed and some results are presented. Results from the semi-analytic model will be compared with these test tank measurements and the Monte Carlo model in a later paper.
引用
收藏
页数:12
相关论文
共 10 条
[1]  
Dalgleish F.R., 2009, P SPIE
[2]  
Dalgleish F. R., 2009, P MAR TECHN SOC IEEE
[3]  
Duntley S. Q., 1974, EXPT TVI SYSTEM REPO, P74
[4]   Numerical simulation of the incoherent electro-optical imaging process in plane-stratified media [J].
Giddings, Thomas E. ;
Shirron, Joseph J. .
OPTICAL ENGINEERING, 2009, 48 (12)
[5]   COMPUTER MODELING AND THE DESIGN OF OPTIMAL UNDERWATER IMAGING-SYSTEMS [J].
JAFFE, JS .
IEEE JOURNAL OF OCEANIC ENGINEERING, 1990, 15 (02) :101-111
[6]   Amplitude-modulated laser imager [J].
Mullen, L ;
Laux, A ;
Concannon, B ;
Zege, EP ;
Katsev, IL ;
Prikhach, AS .
APPLIED OPTICS, 2004, 43 (19) :3874-3892
[7]  
Mullen L. J., 2009, P MAR TECHN SOC IEEE
[8]   Propagation of modulated light in water: implications for imaging and communications systems [J].
Mullen, Linda ;
Laux, Alan ;
Cochenour, Brandon .
APPLIED OPTICS, 2009, 48 (14) :2607-2612
[9]  
Taylor JS, 2002, OCEANS 2002 MTS/IEEE CONFERENCE & EXHIBITION, VOLS 1-4, CONFERENCE PROCEEDINGS, P994
[10]  
ZANEVELD RV, 1994, PROC SPIE, V2258, P44