First and second critical exponents for an inhomogeneous Schrodinger equation with combined nonlinearities

被引:4
作者
Alotaibi, Munirah [1 ]
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
Vetro, Calogero [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 04期
关键词
Critical exponent; Global weak solution; Nonlinear Schrodinger equation; DATA BLOW-UP; GLOBAL-SOLUTIONS; LIFE-SPAN; NONEXISTENCE; EXISTENCE;
D O I
10.1007/s00033-022-01784-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrodinger equation iu(t) + Delta u = lambda vertical bar u vertical bar(p) + mu vertical bar Delta u vertical bar(q) + omega(x), t > 0, x is an element of R-N, where N >= 1, p,q > 1, lambda,mu is an element of C, lambda not equal 0, and u(0, .),omega is an element of L-loc(1) (R-N,C). We consider both the cases where mu = 0 and mu not equal 0, respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When mu not equal 0, we show that the nonlinearity vertical bar del u vertical bar(q) induces an interesting phenomenon of discontinuity of the Fujita critical exponent.
引用
收藏
页数:17
相关论文
共 19 条
[11]   Life span of solutions to a nonlocal in time nonlinear fractional Schrodinger equation [J].
Kirane, M. ;
Nabti, A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1473-1482
[12]   GLOBAL EXISTENCE, LARGE TIME BEHAVIOR AND LIFE-SPAN OF SOLUTIONS OF A SEMILINEAR PARABOLIC CAUCHY-PROBLEM [J].
LEE, TY ;
NI, WM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (01) :365-378
[13]  
Mitidieri E., 2001, P STEKLOV I MATH, V234, P1
[14]  
Nabti A., 2015, ELECTRON J DIFFER EQ, V312, P1
[15]   Existence and nonexistence of global solutions for u(t)=Delta u+a(x)u(p) in R(d) [J].
Pinsky, RG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) :152-177
[16]   NON-LINEAR SCATTERING-THEORY AT LOW-ENERGY [J].
STRAUSS, WA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 41 (01) :110-133
[17]  
Tsutsumi Yoshio, 1987, Funkcial. Ekvac, V30, P115
[18]   A new critical phenomenon for semilinear parabolic problems [J].
Zhang, QS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 219 (01) :125-139
[19]   The nonexistence of global solutions for a time fractional nonlinear Schrodinger equation without gauge invariance [J].
Zhang, Quanguo ;
Sun, Hong-Rui ;
Li, Yaning .
APPLIED MATHEMATICS LETTERS, 2017, 64 :119-124