Short communication: Two properties of diagonally dominant matrices

被引:0
作者
Yong, XR
机构
关键词
diagonally dominant matrix; determinant; norm;
D O I
10.1002/(SICI)1099-1506(199603/04)3:2<173::AID-NLA69>3.0.CO;2-C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A property of strictly diagonally dominant matrices and a generalization of a Varga's bound for \\A(-1)\\(infinity) to the case \\A(-1) B\\(infinity), are given and the two-sided bounds for the determinants of strictly diagonally dominant matrices are derived.
引用
收藏
页码:173 / 177
页数:5
相关论文
共 50 条
  • [21] Diagonally and antidiagonally symmetric alternating sign matrices of odd order
    Behrend, Roger E.
    Fischer, Ilse
    Konvalinka, Matjaz
    ADVANCES IN MATHEMATICS, 2017, 315 : 324 - 365
  • [22] The Schur Complement of γ-Dominant Matrices
    Zhou, Lixin
    Lyu, Zhen-Hua
    Liu, Jianzhou
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3701 - 3725
  • [23] Some properties of the generalized max Frank matrices
    Gokbas, Hasan
    AIMS MATHEMATICS, 2024, 9 (10): : 26826 - 26835
  • [24] On properties of cell matrices
    Jaklic, Gasper
    Modic, Jolanda
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 2016 - 2023
  • [25] NECESSARY AND SUFFICIENT CONDITIONS FOR IDENTIFYING STRICTLY GEOMETRICALLY α-BIDIAGONALLY DOMINANT MATRICES
    Wang, Lei-Lei
    Xi, Bo-Yan
    Qi, Feng
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 57 - 66
  • [26] Determinant of the Generalized Lucas RSFMLR Circulant Matrices in Communication
    Zheng, Yanpeng
    Shon, Sugoog
    Lee, Sanghyup
    Oh, Dongpyo
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT I, 2013, 391 : 72 - 81
  • [27] The new improved estimates of the dominant degree and disc theorem for the Schur complement of matrices
    Cui, Jingjing
    Peng, Guohua
    Lu, Quan
    Huang, Zhengge
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (07) : 1329 - 1348
  • [28] Algebraic properties of Manin matrices 1
    Chervov, A.
    Falqui, G.
    Rubtsov, V.
    ADVANCES IN APPLIED MATHEMATICS, 2009, 43 (03) : 239 - 315
  • [29] Spectral properties for γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-diagonally dominant operator matrices using demicompactness classes and applications
    Aref Jeribi
    Bilel Krichen
    Ali Zitouni
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 (3): : 2391 - 2406
  • [30] Determinants of sums of two real matrices and their extensions
    Tam, Tin-Yau
    Thompson, Mary Clair
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12) : 1409 - 1431