INTERPOLATION OF APPROXIMATION NUMBERS BETWEEN HILBERT SPACES

被引:4
作者
Szwedek, Radoslaw [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
Approximation numbers; entropy numbers; interpolation spaces; quadratic interpolation; normal operators; BANACH-SPACES; OPERATORS; EIGENVALUES; ENTROPY;
D O I
10.5186/aasfm.2015.4014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate whether the approximation numbers of operators behave well under the two-sided complex interpolation of Hilbert spaces. We study geometric interpolation of the approximation numbers as well as the entropy moduli. We also study geometric properties of the entropy and approximation numbers of operators between Hilbert spaces. In particular, we provide the quantitative estimates of approximation numbers as well as the interpolation results on normal operators.
引用
收藏
页码:343 / 360
页数:18
相关论文
共 22 条
[1]  
ALLAKHVERDIEV DE, 1957, UCHEN ZAP AZERB U, V2, P27
[2]  
[Anonymous], USPEHI MAT NAUK
[3]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], 1978, MATH MONOGR
[5]  
[Anonymous], 1958, B MATH SOC SCI MATH
[6]  
Brudnyi Y., 1991, INTERPOLATION FUNCTO, V1
[7]   INEQUALITIES BETWEEN EIGENVALUES, ENTROPY NUMBERS, AND RELATED QUANTITIES OF COMPACT-OPERATORS IN BANACH-SPACES [J].
CARL, B ;
TRIEBEL, H .
MATHEMATISCHE ANNALEN, 1980, 251 (02) :129-133
[8]  
Carl I., Cambridge Tracts in Mathematics<span style="color:mediumvioletred
[9]   INTERPOLATION OF QUADRATIC NORMS [J].
DONOGHUE, WF .
ACTA MATHEMATICA UPPSALA, 1967, 118 (3-4) :251-&
[10]   Embeddings, Hardy operators and nonlinear problems [J].
Edmunds, D. E. .
REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (02) :267-319