The Impact of Freeze-Thaw History on Soil Carbon Response to Experimental Freeze-Thaw Cycles

被引:15
|
作者
Rooney, Erin C. [1 ,2 ]
Bailey, Vanessa L. [2 ]
Patel, Kaizad F. [2 ]
Possinger, Angela R. [3 ]
Gallo, Adrian C. [4 ]
Bergmann, Maya [1 ]
SanClements, Michael [5 ]
Lybrand, Rebecca A. [1 ,6 ]
机构
[1] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA
[2] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA
[3] Virginia Tech, Forest Resources & Environm Conservat, Blacksburg, VA USA
[4] Oregon State Univ, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA
[5] Battelle Mem Inst, Natl Ecol Observ Network NEON, Boulder, CO USA
[6] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Freeze-thaw; permafrost; organic carbon; Arctic; soil; DISSOLVED ORGANIC-MATTER; PERMAFROST SOILS; MASS; NITROGEN; STABILIZATION; OXIDATION; TRENDS; REGION; TUNDRA;
D O I
10.1029/2022JG006889
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Freeze-thaw is a disturbance process in cold regions where permafrost soils are becoming vulnerable to temperature fluctuations above 0 degrees C. Freeze-thaw alters soil physical and biogeochemical properties with implications for carbon persistence and emissions in Arctic landscapes. We examined whether different freeze-thaw histories in two soil systems led to contrasting biogeochemical responses under a laboratory-controlled freeze-thaw incubation. We investigated controls on carbon composition through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to identify nominal carbon oxidation states and relative abundances of aliphatic-type carbon molecules in both surface and subsurface soils. Soil cores (similar to 60 cm-depth) were sampled from two sites in Alaskan permafrost landscapes with different in situ freeze-thaw characteristics: Healy (>40 freeze-thaw cycles annually) and Toolik (<15 freeze-thaw cycles annually). FT-ICR-MS was coupled with in situ temperature data and soil properties (i.e., soil texture, mineralogy) to assess (a) differences in soil organic matter composition associated with previous freeze-thaw history and (b) sensitivity to experimental freeze-thaw in the extracted cores. Control (freeze-only) samples showed greater carbon oxidation in Healy soils compared with Toolik, even in lower mineral horizons where freeze-thaw history was comparable across both sites. Healy showed the most loss of carbon compounds following experimental freeze-thaw in the lower mineral depths, including a decrease in aliphatics. Toolik soils responded more slowly to freeze-thaw as shown by intermediary carbon oxidation distributed across multiple carbon compound classes. Variations in the response of permafrost carbon chemistry to freeze-thaw is an important factor for predicting changes in soil function as permafrost thaws in high northern latitudes.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Application of Triangular Polypropylene Fibres on Soil Subjected to Freeze-Thaw Cycles
    Chaduvula U.
    Desai A.K.
    Solanki C.H.
    Indian Geotechnical Journal, 2014, 44 (03) : 351 - 356
  • [42] Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles
    Steven K. Schmidt
    Lara Vimercati
    Journal of Microbiology, 2019, 57 : 243 - 251
  • [43] Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere
    Ala Musa
    Liu Ya
    Wang Anzhi
    Niu Cunyang
    GEODERMA, 2016, 264 : 132 - 139
  • [44] Effect of Freeze-Thaw Cycles on Bacterial Communities of Arctic Tundra Soil
    Mannisto, Minna K.
    Tiirola, Marja
    Haggblom, Max M.
    MICROBIAL ECOLOGY, 2009, 58 (03) : 621 - 631
  • [45] Effects of Freeze-Thaw Cycles on the Mechanical Properties and Microstructure of a Dispersed Soil
    Zhang, Shurui
    Xu, Xin
    Dong, Xiaoqiang
    Lei, Haomin
    Sun, Xun
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [46] An analysis of freeze-thaw cycles on geotechnical properties of soft-soil
    Meeravali, Karumanchi
    Alla, Suseela
    Syed, Habibunnisa
    Ruben, Nerella
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 1304 - 1309
  • [47] Performance of clay soil reinforced with fibers subjected to freeze-thaw cycles
    Kravchenko, Ekaterina
    Liu, Jiankun
    Niu, Weiwei
    Zhang, Shujuan
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2018, 153 : 18 - 24
  • [48] Effect of freeze-thaw cycles on carbon stocks of saline-alkali paddy soil
    Tang, Jie
    Liang, Shuang
    Li, Zhaoyang
    Zhang, Hao
    Lou, Yun
    Wang, Jingjing
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2016, 62 (12) : 1640 - 1653
  • [49] Pore water pressure measurement for soil subjected to freeze-thaw cycles
    Zhang Lian-hai
    Ma Wei
    Yang Cheng-song
    ROCK AND SOIL MECHANICS, 2015, 36 (07) : 1856 - 1864
  • [50] Effect of Freeze-Thaw Cycles on the Microstructure Characteristics of Unsaturated Expansive Soil
    Li, Xinyu
    Cong, Shengyi
    Tang, Liang
    Ling, Xianzhang
    SUSTAINABILITY, 2025, 17 (02)