The Impact of Freeze-Thaw History on Soil Carbon Response to Experimental Freeze-Thaw Cycles

被引:15
|
作者
Rooney, Erin C. [1 ,2 ]
Bailey, Vanessa L. [2 ]
Patel, Kaizad F. [2 ]
Possinger, Angela R. [3 ]
Gallo, Adrian C. [4 ]
Bergmann, Maya [1 ]
SanClements, Michael [5 ]
Lybrand, Rebecca A. [1 ,6 ]
机构
[1] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA
[2] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA
[3] Virginia Tech, Forest Resources & Environm Conservat, Blacksburg, VA USA
[4] Oregon State Univ, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA
[5] Battelle Mem Inst, Natl Ecol Observ Network NEON, Boulder, CO USA
[6] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Freeze-thaw; permafrost; organic carbon; Arctic; soil; DISSOLVED ORGANIC-MATTER; PERMAFROST SOILS; MASS; NITROGEN; STABILIZATION; OXIDATION; TRENDS; REGION; TUNDRA;
D O I
10.1029/2022JG006889
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Freeze-thaw is a disturbance process in cold regions where permafrost soils are becoming vulnerable to temperature fluctuations above 0 degrees C. Freeze-thaw alters soil physical and biogeochemical properties with implications for carbon persistence and emissions in Arctic landscapes. We examined whether different freeze-thaw histories in two soil systems led to contrasting biogeochemical responses under a laboratory-controlled freeze-thaw incubation. We investigated controls on carbon composition through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to identify nominal carbon oxidation states and relative abundances of aliphatic-type carbon molecules in both surface and subsurface soils. Soil cores (similar to 60 cm-depth) were sampled from two sites in Alaskan permafrost landscapes with different in situ freeze-thaw characteristics: Healy (>40 freeze-thaw cycles annually) and Toolik (<15 freeze-thaw cycles annually). FT-ICR-MS was coupled with in situ temperature data and soil properties (i.e., soil texture, mineralogy) to assess (a) differences in soil organic matter composition associated with previous freeze-thaw history and (b) sensitivity to experimental freeze-thaw in the extracted cores. Control (freeze-only) samples showed greater carbon oxidation in Healy soils compared with Toolik, even in lower mineral horizons where freeze-thaw history was comparable across both sites. Healy showed the most loss of carbon compounds following experimental freeze-thaw in the lower mineral depths, including a decrease in aliphatics. Toolik soils responded more slowly to freeze-thaw as shown by intermediary carbon oxidation distributed across multiple carbon compound classes. Variations in the response of permafrost carbon chemistry to freeze-thaw is an important factor for predicting changes in soil function as permafrost thaws in high northern latitudes.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Response of soil constituents to freeze-thaw cycles in wetland soil solution
    Yu, Xiaofei
    Zou, Yuanchun
    Jiang, Ming
    Lu, Xianguo
    Wang, Guoping
    SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (06) : 1308 - 1320
  • [2] Response of denitrifying communities to successive soil freeze-thaw cycles
    Yanai, Yosuke
    Toyota, Koki
    Okazaki, Masanori
    BIOLOGY AND FERTILITY OF SOILS, 2007, 44 (01) : 113 - 119
  • [3] Soil pore network response to freeze-thaw cycles in permafrost aggregates
    Rooney, Erin C.
    Bailey, Vanessa L.
    Patel, Kaizad F.
    Dragila, Maria
    Battu, Anil K.
    Buchko, Alexander C.
    Gallo, Adrian C.
    Hatten, Jeffery
    Possinger, Angela R.
    Qafoku, Odeta
    Reno, Loren. R.
    SanClements, Michael
    Varga, Tamas
    Lybrand, Rebecca A.
    GEODERMA, 2022, 411
  • [4] Effects of freeze-thaw cycles on High Arctic soil bacterial communities
    Lim, P. P.
    Pearce, D. A.
    Convey, P.
    Lee, L. S.
    Chan, K. G.
    Tan, G. Y. A.
    POLAR SCIENCE, 2020, 23
  • [5] A review of the influence of freeze-thaw cycles on soil geotechnical properties
    Qi, Jilin
    Vermeer, Pieter A.
    Cheng, Guodong
    PERMAFROST AND PERIGLACIAL PROCESSES, 2006, 17 (03) : 245 - 252
  • [6] Climate and Ecosystem Factors Mediate Soil Freeze-Thaw Cycles at the Continental Scale
    Rooney, Erin C.
    Possinger, Angela R.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2024, 129 (12)
  • [7] Effects of freeze-thaw cycles on soil nutrients by soft rock and sand remodeling
    Zhang, Haiou
    Zhang, Yang
    Cao, Tingting
    Wang, Yingguo
    Hou, Xiandong
    OPEN GEOSCIENCES, 2024, 16 (01)
  • [8] Effects of soil freeze-thaw cycles differ between experimental plant communities
    Kreyling, Juergen
    Beierkuhnlein, Carl
    Jentsch, Anke
    BASIC AND APPLIED ECOLOGY, 2010, 11 (01) : 65 - 75
  • [9] Impact of freeze-thaw cycles on circulating inflammation marker measurements
    Huang, Wen-Yi
    Kemp, Troy J.
    Pfeiffer, Ruth M.
    Pinto, Ligia A.
    Hildesheim, Allan
    Purdue, Mark P.
    CYTOKINE, 2017, 95 : 113 - 117
  • [10] Response of compost biocover to freeze-thaw cycles: Column experiments
    Moghbel, Farzad
    Fall, Mamadou
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2016, 131 : 39 - 45